About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 830252, 7 pages
http://dx.doi.org/10.1155/2012/830252
Research Article

A Hybrid Technique for Medical Image Segmentation

1School of Electrical Engineering, University of Ulsan, Building 7, Room No. 308, 93 Daehak-ro, Nam-gu, Ulsan 680-749, Republic of Korea
2School of Electronics and Computer Engineering, Chonnam National University, Building 7, Room No. 506, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea

Received 22 May 2012; Revised 11 July 2012; Accepted 12 July 2012

Academic Editor: Tai Hoon Kim

Copyright © 2012 Alamgir Nyma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Gonzalez and R. Woods, Digital Image Processing, Prentice-Hall, Upper Saddle River, NJ, USA, 2nd edition, 2002.
  2. K. S. Fu and J. K. Mui, “A survey on image segmentation,” Pattern Recognition, vol. 13, no. 1, pp. 3–16, 1981. View at Scopus
  3. D. Jayadevappa, S. Srinivas Kumar, and D. S. Murthy, “A Hybrid segmentation model based on watershed and gradient vector flow for the detection of Brain tumor,” International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 2, no. 3, pp. 29–42, 2009.
  4. H. S. Prasantha, H. L. Shashidhara, K. N. B. Murthy, and L. G. Madhavi, “Medical image segmentation,” International Journal on Computer Science and Engineering, vol. 2, no. 4, pp. 1209–1218, 2010.
  5. Z. K. Huang, Y. M. Xie, D. H. Liu, and L. Y. Hou, “Using fuzzy c-means cluster for histogram-based color image segmentation,” in Proceedings of the International Conference on Information Technology and Computer Science (ITCS '09), pp. 597–600, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Otsu, “A Threshold selecting method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979. View at Scopus
  7. M. Tabakov, “A fuzzy clustering technique for medical image segmentation,” in Proceedings of the International Symposium on Evolving Fuzzy Systems (EFS '06), pp. 118–122, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters,” Journal of Cybernetics, vol. 3, no. 3, pp. 32–57, 1973. View at Scopus
  9. J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algorithms, Advanced Applications in Pattern Recognition, Springer, Berlin, Germany, 1981.
  10. J. L. Fan, W. Z. Zhen, and W. X. Xie, “Suppressed fuzzy c-means clustering algorithm,” Pattern Recognition Letters, vol. 24, no. 9-10, pp. 1607–1612, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. W. L. Hung, M. S. Yang, and D. H. Chen, “Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation,” Pattern Recognition Letters, vol. 27, no. 5, pp. 424–438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. O. J. Tobias and R. Seara, “Image segmentation by histogram thresholding using fuzzy sets,” IEEE Transactions on Image Processing, vol. 11, no. 12, pp. 1457–1465, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Chaabane Ben, M. Sayadi, F. Fnaiech, and E. Brassart, “Color image segmentation using automatic thresholding and the fuzzy c-means techniques,” in Proceedings of the IEEE Mediterranean Electrotechnical Conference (MELECON '08), pp. 857–861, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. S. Tan and N. A. M. Isa, “Color image segmentation using histogram thresholding Fuzzy C-means hybrid approach,” Pattern Recognition, vol. 44, no. 1, pp. 1–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. H. A. Hadi, K. Mortexza, and S. Y. Hadi, “Least mean square algorithm tuned by fuzzy C-means for impulsive noise suppression of gray-level images,” International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 3, no. 4, pp. 55–66, 2010.
  16. J. Astola, P. Haavisto, and Y. Neuvo, “Vector median filters,” Proceedings of the IEEE, vol. 78, no. 4, pp. 678–689, 1990. View at Publisher · View at Google Scholar · View at Scopus
  17. J. C. Bezdek, J. Keller, R. Krisnapuram, and N. Pal, Fuzzy Models and Algorithms For Pattern Recognition and Image Processing, Springer, Berlin, Germany, 2005.
  18. Internet Brain Segmentation Repository (IBSR).
  19. M. A. Ali, G. C. Karmakar, and L. S. Dooley, “Image segmentation using fuzzy clustering incorporating spatial information,” in Proceedings of the International Conference on Computer and Information Technology, pp. 878–881, February 2004. View at Scopus
  20. L. Chen, C. L. P. Chen, and M. Lu, “A multiple-Kernel Fuzzy C-means algorithm for image segmentation,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 41, no. 5, pp. 1263–1274, 2011. View at Publisher · View at Google Scholar