About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 834578, 9 pages
http://dx.doi.org/10.1155/2012/834578
Research Article

A Classification Method of Normal and Overweight Females Based on Facial Features for Automated Medical Applications

Division of Constitutional Medicine Research, Korea Institute of Oriental Medicine, Deajeon 305-811, Republic of Korea

Received 22 May 2012; Accepted 30 May 2012

Academic Editor: Sabah Mohammed

Copyright © 2012 Bum Ju Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. H. James and J. C. Peters, “Environmental contributions to the obesity epidemic,” Science, vol. 280, no. 5368, pp. 1371–1374, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. A. G. Comuzzie and D. B. Allison, “The search for human obesity genes,” Science, vol. 280, no. 5368, pp. 1374–1377, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. J. P. Després and I. Lemieux, “Abdominal obesity and metabolic syndrome,” Nature, vol. 444, no. 7121, pp. 881–887, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Hirose, T. Takayama, S. Hozawa, T. Hibi, and I. Saito, “Prediction of metabolic syndrome using artificial neural network system based on clinical data including insulin resistance index and serum adiponectin,” Computers in Biology and Medicine, vol. 41, no. 11, pp. 1051–1056, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. L. L. Yan, M. L. Daviglus, K. Liu et al., “BMI and health-related quality of life in adults 65 years and older,” Obesity Research, vol. 12, no. 1, pp. 69–76, 2004. View at Scopus
  6. C. Ni Mhurchu, A. Rodgers, W. H. Pan et al., “Body mass index and cardiovascular disease in the Asia-Pacific Region: an overview of 33 cohorts involving 310 000 participants,” International Journal of Epidemiology, vol. 33, no. 4, pp. 751–758, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Haas, S. Svacina, J. Pav, R. Hovorka, P. Sucharda, and J. Sonka, “Risk calculation of type 2 diabetes,” Computer Methods and Programs in Biomedicine, vol. 41, no. 3-4, pp. 297–303, 1994. View at Scopus
  8. C. M. Y. Lee, S. Colagiuri, M. Ezzati, and M. Woodward, “The burden of cardiovascular disease associated with high body mass index in the Asia-Pacific region,” Obesity Reviews, vol. 12, no. 501, pp. e454–e459, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Li, A. P. De Moira, and C. Power, “Predicting cardiovascular disease risk factors in midadulthood from childhood body mass index: utility of different cutoffs for childhood body mass index,” American Journal of Clinical Nutrition, vol. 93, no. 6, pp. 1204–1211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Anuurad, K. Shiwaku, A. Nogi et al., “The new BMI criteria for Asians by the regional office for the Western Pacific region of WHO are suitable for screening of overweight to prevent metabolic syndrome in elder japanese workers,” Journal of Occupational Health, vol. 45, no. 6, pp. 335–343, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. P. Hye, S. Y. Yeong, Y. P. Jung, S. K. Young, and M. C. Joong, “Obesity, abdominal obesity, and clustering of cardiovascular risk factors in South Korea,” Asia Pacific Journal of Clinical Nutrition, vol. 12, no. 4, pp. 411–418, 2003. View at Scopus
  12. J. Y. Kim, H. M. Chang, J. J. Cho, S. H. Yoo, and S. Y. Kim, “Relationship between obesity and depression in the Korean working population,” Journal of Korean Medical Science, vol. 25, no. 11, pp. 1560–1567, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Fonseca, A. M. Silva, M. G. Matos et al., “Validity of BMI based on self-reported weight and height in adolescents,” Acta Paediatrica, International Journal of Paediatrics, vol. 99, no. 1, pp. 83–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Sobottka and I. Pitas, “A novel method for automatic face segmentation, facial feature extraction and tracking,” Signal Processing: Image Communication, vol. 12, no. 3, pp. 263–281, 1998. View at Scopus
  15. Y. Wang, C. S. Chua, and Y. K. Ho, “Facial feature detection and face recognition from 2D and 3D images,” Pattern Recognition Letters, vol. 23, no. 10, pp. 1191–1202, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. C. L. Huang and Y. M. Huang, “Facial Expression Recognition Using Model-Based Feature Extraction and Action Parameters Classification,” Journal of Visual Communication and Image Representation, vol. 8, no. 3, pp. 278–290, 1997. View at Scopus
  17. M. H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting faces in images: a survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 1, pp. 34–58, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. E. N. Reither, R. M. Hauser, and K. C. Swallen, “Predicting adult health and mortality from adolescent facial characteristics in yearbook photographs,” Demography, vol. 46, no. 1, pp. 27–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Levine, A. Ray, and M. D. Jensen, “Relation between chubby cheeks and visceral fat,” New England Journal of Medicine, vol. 339, no. 26, pp. 1946–1947, 1998. View at Scopus
  20. A. Sadeghianrizi, C. M. Forsberg, C. Marcus, and G. Dahllöf, “Craniofacial development in obese adolescents,” European Journal of Orthodontics, vol. 27, no. 6, pp. 550–555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Frowd, C. Lee, A. Petkovic, K. Nawaz, and Y. Bashir, “Further automating and refining the construction and recognition of facial composite images,” International Journal of Bio-Science and Bio-Technology, vol. 1, no. 1, pp. 59–74, 2009. View at Scopus
  22. C. D. Frowd, S. Ramsay, and P. J. B. Hancock, “The influence of holistic interviewing on hair perception for the production of facial composites,” International Journal of Bio-Science and Bio-Technology, vol. 3, no. 3, pp. 55–64, 2011. View at Scopus
  23. M. Soltane, N. Doghmane, and N. Guersi, “Face and speech based multi-modal biometric authentication,” International Journal of Advanced Science and Technology, vol. 21, no. 6, pp. 41–56, 2010.
  24. World Health Organisation, International Association for the Study of Obesity, International Obesity TaskForce, and The Asia-Pacific Perspective, “Redefining obesity and its treatment,” Health Communications, Sydney, Australia, 2000.
  25. C. Barba, T. Cavalli-Sforza, J. Cutter et al., “Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies,” Lancet, vol. 363, no. 9403, pp. 157–163, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. D. D. Pham, J. H. Do, B. Ku, H. J. Lee, H. Kim, and J. Y. Kim, “Body mass index and facial cues in Sasang typology for young and elderly persons,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 749209, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. U. M. Fayyad and K. B. Irani, “Multi-interval discretization of continuous-valued attributes for classification learning,” in Proceedings of the 13th International Joint Conference on Uncertainty in Artificial Intelligence, vol. 2, pp. 1022–1027, 1993.
  28. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA data mining software: an update,” SIGKDD Explorations, vol. 11, pp. 10–18, 2009.
  29. T. Douchi, S. Yamamoto, S. Nakamura et al., “The effect of menopause on regional and total body lean mass,” Maturitas, vol. 29, no. 3, pp. 247–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Skrzypczak and A. Szwed, “Assessment of the body mass index and selected physiological parameters in pre- and post-menopausal women,” HOMO- Journal of Comparative Human Biology, vol. 56, no. 2, pp. 141–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. Q. Wang, C. Hassager, P. Ravn, S. Wang, and C. Christiansen, “Total and regional body-composition changes in early postmenopausal women: age-related or menopause-related?” American Journal of Clinical Nutrition, vol. 60, no. 6, pp. 843–848, 1994. View at Scopus
  32. D. Krieser, K. Nguyen, D. Kerr, D. Jolley, M. Clooney, and A. M. Kelly, “Parental weight estimation of their child's weight is more accurate than other weight estimation methods for determining children's weight in an emergency department?” Emergency Medicine Journal, vol. 24, no. 11, pp. 756–759, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. T. R. Coe, M. Halkes, K. Houghton, and D. Jefferson, “The accuracy of visual estimation of weight and height in pre-operative supine patients,” Anaesthesia, vol. 54, no. 6, pp. 582–586, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. W. L. Hall, G. L. Larkin, M. J. Trujillo, J. L. Hinds, and K. A. Delaney, “Errors in weight estimation in the emergency department: comparing performance by providers and patients,” Journal of Emergency Medicine, vol. 27, no. 3, pp. 219–224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Menon and A. M. Kelly, “How accurate is weight estimation in the emergency department?” Emergency Medicine Australasia, vol. 17, no. 2, pp. 113–116, 2005. View at Scopus