About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 915380, 8 pages
http://dx.doi.org/10.1155/2012/915380
Research Article

Curcumin Attenuates Gastric Cancer Induced by N-Methyl-N-Nitrosourea and Saturated Sodium Chloride in Rats

1Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
2Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

Received 23 February 2012; Revised 31 March 2012; Accepted 1 April 2012

Academic Editor: Amr Amin

Copyright © 2012 Kawiya Sintara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Parkin, F. I. Bray, and S. S. Devesa, “Cancer burden in the year 2000. The global picture,” European Journal of Cancer, vol. 37, no. 8, pp. S4–S66, 2001. View at Scopus
  2. D. M. Parkin, “International variation,” Oncogene, vol. 23, no. 38, pp. 6329–6340, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. P. Howson, T. Hiyama, and E. L. Wynder, “The decline in gastric cancer: epidemiology of an unplanned triumph,” Epidemiologic Reviews, vol. 8, no. 1, pp. 1–27, 1986. View at Scopus
  4. M. Kobayashi, Y. Tsubono, S. Sasazuki, S. Sasaki, and S. Tsugane, “Vegetables, fruit and risk of gastric cancer in Japan: a 10-year follow-up of the JPHC study cohort I,” International Journal of Cancer, vol. 102, no. 1, pp. 39–44, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Furihata, H. Ohta, and T. Katsuyama, “Cause and effect between concentration-dependent tissue damage and temporary cell proliferation in rat stomach mucosa by NaCl, a stomach tumor promoter,” Carcinogenesis, vol. 17, no. 3, pp. 401–406, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Tatematsu, M. Takahashi, and S. Fukushima, “Effects in rats of sodium chloride on experimental gastric cancers induced by N methyl N' nitro N nitrosoguanidine or 4 nitroquinoline 1 oxide,” Journal of the National Cancer Institute, vol. 55, no. 1, pp. 101–106, 1975. View at Scopus
  7. M. Takahashi, A. Nishikawa, F. Furukawa, T. Enami, T. Hasegawa, and Y. Hayashi, “Dose-dependent promoting effects of sodium chloride (NaCl) on rat glandular stomach carcinogenesis initiated with N-methyl-N'-nitro-N-nitrosoguanidine,” Carcinogenesis, vol. 15, no. 7, pp. 1429–1432, 1994. View at Scopus
  8. S. Kato, T. Tsukamoto, T. Mizoshita et al., “High salt diets dose-dependently promote gastric chemical carcinogenesis in Helicobacter pylori-infected Mongolian gerbils associated with a shift in mucin production from glandular to surface mucous cells,” International Journal of Cancer, vol. 119, no. 7, pp. 1558–1566, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. W. K. Leung, K. C. Wu, C. Y. P. Wong et al., “Transgenic cyclooxygenase-2 expression and high salt enhanced susceptibility to chemical-induced gastric cancer development in mice,” Carcinogenesis, vol. 29, no. 8, pp. 1648–1654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. IARC, Some Aromatic Amines, Hydrazine and Related Substances, N-Nitroso Compounds and Miscellaneous Alkylating agents. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, International Agency for Research on Cancer, Lyon, France, 1974.
  11. C. Furihata, E. Ikui, and T. Matsushima, “DNA damaging and cell proliferative activity of 1-methyl-1-nitrosourea in rat glandular stomach mucosa,” Mutation Research, vol. 348, no. 4, pp. 169–173, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. D. J. Hoivik, J. S. Allen, H. G. Wall, J. B. Nold, R. T. Miller, and M. J. Santostefano, “Studies evaluating the utility of N-methyl-N-nitrosourea as a positive control in carcinogenicity studies in the p53+/- mouse,” International Journal of Toxicology, vol. 24, no. 5, pp. 349–356, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Karin and F. R. Greten, “NF-κB: linking inflammation and immunity to cancer development and progression,” Nature Reviews Immunology, vol. 5, no. 10, pp. 749–759, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. J. Kim, N. Hawke, and A. S. Baldwin, “NF-κB and IKK as therapeutic targets in cancer,” Cell Death and Differentiation, vol. 13, no. 5, pp. 738–747, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Valavanidis, T. Vlachogianni, and C. Fiotakis, “8-hydroxy-2' -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis.,” Journal of Environmental Science and Health C, vol. 27, no. 2, pp. 120–139, 2009. View at Scopus
  16. R. A. Sharma, A. J. Gescher, and W. P. Steward, “Curcumin: the story so far,” European Journal of Cancer, vol. 41, no. 13, pp. 1955–1968, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Sa and T. Das, “Anti cancer effects of curcumin: cycle of life and death,” Cell Division, vol. 3, article 14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. B. B. Aggarwal, Y. Takada, and O. V. Oommen, “From chemoprevention to chemotherapy: common targets and common goals,” Expert Opinion on Investigational Drugs, vol. 13, no. 10, pp. 1327–1338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Thong-Ngam, K. Sintara, M. Chayanupatkul, N. Klaikaew, and T. Chatsuwan, “The rat models of gastric cancer using Helicobacter pylori infection, N-methyl-N-nitrosourea, and high salt induced carcinogenesis,” Thai Journal of Gastroenterology, vol. 11, no. 1, pp. 41–48, 2010.
  20. M. T. Huang, Y. R. Lou, W. Ma, H. L. Newmark, K. R. Reuhl, and A. H. Conney, “Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice,” Cancer Research, vol. 54, no. 22, pp. 5841–5847, 1994. View at Scopus
  21. B. Lu, L. Xu, L. Yu, and L. Zhang, “Extract of radix curcumae prevents gastric cancer in rats,” Digestion, vol. 77, no. 2, pp. 87–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Levidou, P. Korkolopoulou, N. Nikiteas et al., “Expression of nuclear factor κB in human gastric carcinoma: relationship with IκBa and prognostic significance,” Virchows Archiv, vol. 450, no. 5, pp. 519–527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Wu, Z. Pu, J. Feng, G. Li, Z. Zheng, and W. Shen, “The ubiquitin-proteasome pathway and enhanced activity of NF-κB in gastric carcinoma,” Journal of Surgical Oncology, vol. 97, no. 5, pp. 439–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Van Hogerlinden, B. L. Rozell, L. Ährlund-Richter, and R. Toftgård, “Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-κB signaling,” Cancer Research, vol. 59, no. 14, pp. 3299–3303, 1999. View at Scopus
  25. J. S. Ross, B. V. S. Kallakury, C. E. Sheehan et al., “Expression of nuclear factor-κB and IκBα proteins in prostatic adenocarcinomas: correlation of nuclear factor-κB immunoreactivity with disease recurrence,” Clinical Cancer Research, vol. 10, no. 7, pp. 2466–2472, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Jobin, C. A. Bradham, M. P. Russo et al., “Curcumin blocks cytokine-mediated NF-κB activation and proinflammatory gene expression by inhibiting inhibitory factor I-κB kinase activity,” Journal of Immunology, vol. 163, no. 6, pp. 3474–3483, 1999. View at Scopus
  27. D. Wang, M. S. Veena, K. Stevenson et al., “Liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor κB by an AKT-independent pathway,” Clinical Cancer Research, vol. 14, no. 19, pp. 6228–6236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Chang, F. Wang, Y. S. Zhao, and H. Z. Pan, “Evaluation of oxidative stress in colorectal cancer patients,” Biomedical and Environmental Sciences, vol. 21, no. 4, pp. 286–289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Chuma, S. Hige, M. Nakanishi et al., “8-Hydroxy-2′-deoxy-guanosine is a risk factor for development of hepatocellular carcinoma in patients with chronic hepatitis C virus infection,” Journal of Gastroenterology and Hepatology, vol. 23, no. 9, pp. 1431–1436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Bahar, R. Feinmesser, T. Shpitzer, A. Popovtzer, and R. M. Nagler, “Salivary analysis in oral cancer patients: DNA and protein oxidation, reactive nitrogen species, and antioxidant profile,” Cancer, vol. 109, no. 1, pp. 54–59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Chen, J. Dub, and L. Gu, “Expression of 8-hydroxy-2-deoxyguanosine in gastric carcinomas,” Journal of Nanjing Medical University, vol. 21, no. 1, pp. 11–14, 2007.
  32. V. P. Menon and A. R. Sudheer, “Antioxidant and anti-inflammatory properties of curcumin,” Advances in Experimental Medicine and Biology, vol. 595, pp. 105–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. K. H. Lee, H. E. Lee, S. J. Cho et al., “Immunohistochemical analysis of cell cycle-related molecules in gastric carcinoma: prognostic significance, correlation with clinicopathological parameters, proliferation and apoptosis,” Pathobiology, vol. 75, no. 6, pp. 364–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. P. V. Angadi and R. Krishnapillai, “Cyclin D1 expression in oral squamous cell carcinoma and verrucous carcinoma: correlation with histological differentiation,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 103, no. 3, pp. e30–e35, 2007. View at Publisher · View at Google Scholar · View at Scopus