About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 941232, 12 pages
http://dx.doi.org/10.1155/2012/941232
Review Article

Contribution of Yeast Models to Neurodegeneration Research

REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal

Received 16 February 2012; Revised 11 April 2012; Accepted 7 May 2012

Academic Editor: Claudia Spampinato

Copyright © 2012 Clara Pereira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Cho, M. J. Campbell, E. A. Winzeler et al., “A genome-wide transcriptional analysis of the mitotic cell cycle,” Molecular Cell, vol. 2, no. 1, pp. 65–73, 1998. View at Scopus
  2. H. Zhu, M. Bilgin, R. Bangham et al., “Global analysis of protein activities using proteome chips,” Science, vol. 293, no. 5537, pp. 2101–2105, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Giaever, A. M. Chu, L. Ni, et al., “Functional profiling of the Saccharomyces cerevisiae genome,” Nature, vol. 418, pp. 387–391, 2002.
  4. P. Uetz, L. Glot, G. Cagney et al., “A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae,” Nature, vol. 403, no. 6770, pp. 623–627, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, “A comprehensive two-hybrid analysis to explore the yeast protein interactome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 8, pp. 4569–4574, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. A. H. Y. Tong, M. Evangelista, A. B. Parsons et al., “Systematic genetic analysis with ordered arrays of yeast deletion mutants,” Science, vol. 294, no. 5550, pp. 2364–2368, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. G. M. Jones, J. Stalker, S. Humphray et al., “A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae,” Nature Methods, vol. 5, no. 3, pp. 239–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Khurana and S. Lindquist, “Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker's yeast?” Nature Reviews Neuroscience, vol. 11, no. 6, pp. 436–449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. S. Forman, J. Q. Trojanowski, and V. M. Y. Lee, “Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs,” Nature Medicine, vol. 10, no. 10, pp. 1055–1063, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Saiki, S. Sato, and N. Hattori, “Molecular pathogenesis of Parkinson's disease: update,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 83, pp. 430–436, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Pandolfo and A. Pastore, “The pathogenesis of Friedreich ataxia and the structure and function of frataxin,” Journal of Neurology, vol. 256, no. 1, pp. 9–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Babcock, D. De Silva, R. Oaks et al., “Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin,” Science, vol. 276, no. 5319, pp. 1709–1712, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. R. B. Wilson and D. M. Roof, “Respiratory deficiency due to loss of mitochondrial dna in yeast lacking the frataxin homologue,” Nature Genetics, vol. 16, no. 4, pp. 352–357, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. M. G. Cotticelli, L. Rasmussen, N. L. Kushner, et al., “Primary and secondary drug screening assays for friedreich ataxia,” Journal of Biomolecular Screening, vol. 17, no. 3, pp. 303–313, 2012.
  15. M. B. de Moura, L. S. dos Santos, and B. Van Houten, “Mitochondrial dysfunction in neurodegenerative diseases and cancer,” Environmental and Molecular Mutagenesis, vol. 51, no. 5, pp. 391–405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. D. A. Pearce and F. Sherman, “A yeast model for the study of Batten disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 12, pp. 6915–6918, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Zhang, J. Ren, H. Li et al., “Ncr1p, the yeast ortholog of mammalian Niemann Pick C1 protein, is dispensable for endocytic transport,” Traffic, vol. 5, no. 12, pp. 1017–1030, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. C. Berger, P. K. Hanson, J. W. Nichols, and A. H. Corbett, “A yeast model system for functional analysis of the Niemann-Pick type C protein 1 homolog, Ncr1p,” Traffic, vol. 6, no. 10, pp. 907–917, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Sanchez, B. A. Desany, W. J. Jones, Q. Liu, B. Wang, and S. J. Elledge, “Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways,” Science, vol. 271, no. 5247, pp. 357–360, 1996. View at Scopus
  20. E. Fritz, A. A. Friedl, R. M. Zwacka, F. Eckardt-Schupp, and M. S. Meyn, “The yeast TEL1 gene partially substitutes for human ATM in suppressing hyperrecombination, radiation-induced apoptosis and telomere shortening in A-T cells,” Molecular Biology of the Cell, vol. 11, no. 8, pp. 2605–2616, 2000. View at Scopus
  21. M. Nolden, S. Ehses, M. Koppen, A. Bernacchia, E. I. Rugarli, and T. Langer, “The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria,” Cell, vol. 123, no. 2, pp. 277–289, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. R. B. Wickner, “[URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae,” Science, vol. 264, no. 5158, pp. 566–569, 1994. View at Scopus
  23. S. Bach, N. Talarek, T. Andrieu et al., “Isolation of drugs active against mammalian prions using a yeast-based screening assay,” Nature Biotechnology, vol. 21, no. 9, pp. 1075–1081, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. D. R. Rosen, “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, vol. 362, no. 59, p. 62, 1993. View at Publisher · View at Google Scholar · View at Scopus
  25. C. R. Nishida, E. B. Gralla, and J. S. Valentine, “Characterization of three yeast copper-zinc superoxide dismutase mutants analogous to those coded for in familial amyotrophic lateral sclerosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 9906–9910, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Da Cruz and D. W. Cleveland, “Understanding the role of TDP-43 and FUS/TLS in ALS and beyond,” Current Opinion in Neurobiology, vol. 21, pp. 904–919, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. B. S. Johnson, J. M. McCaffery, S. Lindquist, and A. D. Gitler, “A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 17, pp. 6439–6444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. B. S. Johnson, D. Snead, J. J. Lee, J. M. McCaffery, J. Shorter, and A. D. Gitler, “TDP−43 intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity,” The Journal of Biological Chemistry, vol. 284, no. 37, pp. 20329–20339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Fushimi, C. Long, N. Jayaram, X. Chen, L. Li, and J. Y. Wu, “Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy,” Protein and Cell, vol. 2, no. 2, pp. 141–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Ju, D. F. Tardiff, H. Han et al., “A yeast model of FUS/TLS-dependent cytotoxicity,” PLoS Biology, vol. 9, no. 4, Article ID e1001052, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. T. F. Outeiro and S. Lindquist, “Yeast cells provide insight into alpha-synuclein biology and pathobiology,” Science, vol. 302, no. 5651, pp. 1772–1775, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Xiong, C. E. Coombes, A. Kilaru et al., “GTPase activity plays a key role in the pathobiology of LRRK2,” PLoS Genetics, vol. 6, no. 4, Article ID e1000902, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Zhang, H. Komano, R. S. Fuller, S. E. Gandy, and D. E. Frail, “Proteolytic processing and secretion of human β-amyloid precursor protein in yeast. Evidence for a yeast secretase activity,” Journal of Biological Chemistry, vol. 269, no. 45, pp. 27799–27802, 1994. View at Scopus
  34. A. Chacińska, W. Woźny, M. Boguta, A. Misicka, M. Brzyska, and D. Elbaum, “Effects of beta-amyloid on proliferation and morphology of yeast Saccharomyces cerevisiae,” Letters in Peptide Science, vol. 9, no. 4-5, pp. 197–201, 2002. View at Scopus
  35. T. Vandebroek, D. Terwel, T. Van Helmont, J. Winderickx, and F. Van Leuven, “Phosphorylation and aggregation of protein tau in humanized yeast cells and in transgenic mouse brain,” New Trends in Alzheimer and Parkinson Related Disorders, vol. 256, pp. 15–19, 2005.
  36. M. Goedert and M. G. Spillantini, “A century of Alzheimer's disease,” Science, vol. 314, no. 5800, pp. 777–781, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. J. T. Jarrett, E. P. Berger, and P. T. Lansbury, “The C-terminus of the β protein is critical in amyloidogenesis,” Annals of the New York Academy of Sciences, vol. 695, pp. 144–148, 1993. View at Publisher · View at Google Scholar · View at Scopus
  38. S. J. Soscia, J. E. Kirby, K. J. Washicosky et al., “The Alzheimer's disease-associated amyloid β-protein is an antimicrobial peptide,” PLoS ONE, vol. 5, no. 3, Article ID e9505, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Zhang, D. Espinoza, V. Hines, M. Innis, P. Mehta, and D. L. Miller, “Characterization of β-amyloid peptide precursor processing by the yeast Yap3 and Mkc7 proteases,” Biochimica et Biophysica Acta, vol. 1359, no. 2, pp. 110–122, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Komano, M. Seeger, S. Gandyl, G. T. Wang, G. A. Krafft, and R. S. Fuller, “Involvement of cell surface glycosyl-phosphatidylinositol-linked aspartyl proteases in α-secretase-type cleavage and ectodomain solubilization of human Alzheimer β-amyloid precursor protein in yeast,” Journal of Biological Chemistry, vol. 273, no. 48, pp. 31648–31651, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. J. W. Park, I. H. Lee, J. S. Hahn, J. Kim, K. C. Chung, and S. R. Paik, “Disintegration of amyloid fibrils of α-synuclein by dequalinium,” Biochimica et Biophysica Acta, vol. 1780, no. 10, pp. 1156–1161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. P. Greenfield, H. Xu, P. Greengard, S. Gandy, and M. Seeger, “Generation of the amyloid-β peptide N terminus in Saccharomyces cerevisiae expressing human Alzheimer's amyloid-β precursor protein,” Journal of Biological Chemistry, vol. 274, no. 48, pp. 33843–33846, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. L. J. Sparvero, S. Patz, J. L. Brodsky, and C. M. Coughlan, “Proteomic analysis of the amyloid precursor protein fragment C99: expression in yeast,” Analytical Biochemistry, vol. 370, no. 2, pp. 162–170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Song and Y. K. Jung, “Alzheimer's disease meets the ubiquitin-proteasome system,” Trends in Molecular Medicine, vol. 10, no. 11, pp. 565–570, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. J. N. Keller, J. Gee, and Q. Ding, “The proteasome in brain aging,” Ageing Research Reviews, vol. 1, no. 2, pp. 279–293, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Murakami-Sekimata, K. Sato, K. Sato, A. Takashima, and A. Nakano, “O-Mannosylation is required for the solubilization of heterologously expressed human β-amyloid precursor protein in Saccharomyces cerevisiae,” Genes to Cells, vol. 14, no. 2, pp. 205–215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Edbauer, E. Winkler, J. T. Regula, B. Pesold, H. Steiner, and C. Haass, “Reconstitution of γ-secretase activity,” Nature Cell Biology, vol. 5, no. 5, pp. 486–488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Yagishita, E. Futai, and S. Ishiura, “In vitro reconstitution of γ-secretase activity using yeast microsomes,” Biochemical and Biophysical Research Communications, vol. 377, no. 1, pp. 141–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. P. L. Gunyuzlu, W. H. White, G. L. Davis, G. F. Hollis, and J. H. Toyn, “A yeast genetic assay for caspase cleavage of the Amyloid-β precursor protein,” Applied Biochemistry and Biotechnology B, vol. 15, no. 1, pp. 29–37, 2000. View at Scopus
  50. S. A. Park, G. M. Shaked, D. E. Bredesen, and E. H. Koo, “Mechanism of cytotoxicity mediated by the C31 fragment of the amyloid precursor protein,” Biochemical and Biophysical Research Communications, vol. 388, no. 2, pp. 450–455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. U. Lüthi, C. Schaerer-Brodbeck, S. Tanner, O. Middendorp, K. Edler, and A. Barberis, “Human β-secretase activity in yeast detected by a novel cellular growth selection system,” Biochimica et Biophysica Acta, vol. 1620, no. 1–3, pp. 167–178, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. O. Middendorp, C. Ortler, U. Neumann, P. Paganetti, U. Lüthi, and A. Barberis, “Yeast growth selection system for the identification of cell-active inhibitors of β-secretase,” Biochimica et Biophysica Acta, vol. 1674, no. 1, pp. 29–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. T. A. Bayer and O. Wirths, “Intracellular accumulation of amyloid-Beta—a predictor for synaptic dysfunction and neuron loss in Alzheimer's disease,” Frontiers in Aging Neuroscience, vol. 2, article 8, 2010. View at Publisher · View at Google Scholar
  54. F. M. LaFerla, K. N. Green, and S. Oddo, “Intracellular amyloid-β in Alzheimer's disease,” Nature Reviews Neuroscience, vol. 8, no. 7, pp. 499–509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Bharadwaj, L. Waddington, J. Varghese, and I. G. Macreadie, “A new method to measure cellular toxicity of non-fibrillar and fibrillar Alzheimer's Aβ using yeast,” Journal of Alzheimer's Disease, vol. 13, no. 2, pp. 147–150, 2008. View at Scopus
  56. C. A. McLean, R. A. Cherny, F. W. Fraser, et al., “Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease,” Annals of Neurology, vol. 46, pp. 860–866, 1999.
  57. J. Caine, S. Sankovich, H. Antony et al., “Alzheimer's Aβ fused to green fluorescent protein induces growth stress and a heat shock response,” FEMS Yeast Research, vol. 7, no. 8, pp. 1230–1236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. A. K. Dubey, P. R. Bharadwaj, J. N. Varghese, and I. G. MacReadie, “Alzheimer's amyloid-β rescues yeast from hydroxide toxicity,” Journal of Alzheimer's Disease, vol. 18, no. 1, pp. 31–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Treusch, S. Hamamichi, J. L. Goodman, et al., “Functional links between abeta toxicity, endocytic trafficking, and Alzheimer's disease risk factors in yeast,” Science, vol. 334, pp. 1241–1245, 2011.
  60. I. Macreadie, M. Lotfi-Miri, S. Mohotti, D. Shapira, L. Bennett, and J. Varghese, “Validation of folate in a convenient yeast assay suited for identification of inhibitors of Alzheimer's amyloid-β aggregation,” Journal of Alzheimer's Disease, vol. 15, no. 3, pp. 391–396, 2008. View at Scopus
  61. S. Bagriantsev and S. Liebman, “Modulation of Aβ42 low-n oligomerization using a novel yeast reporter system,” BMC Biology, vol. 4, p. 32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. S. K. Park, S. D. Pegan, A. D. Mesecar, L. M. Jungbauer, M. J. LaDu, and S. W. Liebman, “Development and validation of a yeast high-throughput screen for inhibitors of Abeta oligomerization,” Disease Models & Mechanisms, vol. 4, pp. 822–831, 2011.
  63. L. M. de Lau and M. M. Breteler, “Epidemiology of Parkinson's disease,” Lancet Neurology, vol. 5, no. 6, pp. 525–535, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. J. L. Eriksen, S. Przedborski, and L. Petrucelli, “Gene dosage and pathogenesis of Parkinson's disease,” Trends in Molecular Medicine, vol. 11, no. 3, pp. 91–96, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Schiesling, N. Kieper, K. Seidel, and R. Krüger, “Review: familial Parkinson's disease—genetics, clinical phenotype and neuropathology in relation to the common sporadic form of the disease,” Neuropathology and Applied Neurobiology, vol. 34, no. 3, pp. 255–271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Chandra, G. Gallardo, R. Fernandez-Chacon, O. M. Schluter, and T. C. Sudhof, “Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration,” Cell, vol. 123, pp. 383–396, 2005.
  67. J. Burré, M. Sharma, T. Tsetsenis, V. Buchman, M. R. Etherton, and T. C. Südhof, “α-Synuclein promotes SNARE-complex assembly in vivo and in vitro,” Science, vol. 329, no. 5999, pp. 1663–1667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. W. J. Schulz-Schaeffer, “The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson's disease and Parkinson's disease dementia,” Acta Neuropathologica, vol. 120, no. 2, pp. 131–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Willingham, T. F. Outeiro, M. J. DeVit, S. L. Lindquist, and P. J. Muchowski, “Yeast genes that enhance the toxicity of a mutant huntingtin fragment or α-synuclein,” Science, vol. 302, no. 5651, pp. 1769–1772, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. Q. Chen, J. Thorpe, and J. N. Keller, “α-synuclein alters proteasome function, protein synthesis, and stationary phase viability,” Journal of Biological Chemistry, vol. 280, no. 34, pp. 30009–30017, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. T. R. Flower, L. S. Chesnokova, C. A. Froelich, C. Dixon, and S. N. Witt, “Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson's disease,” Journal of Molecular Biology, vol. 351, no. 5, pp. 1081–1100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Sharma, K. A. Brandis, S. K. Herrera et al., “α-synuclein budding yeast model: toxicity enhanced by impaired proteasome and oxidative stress,” Journal of Molecular Neuroscience, vol. 28, no. 2, pp. 161–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Dixon, N. Mathias, R. M. Zweig, D. A. Davis, and D. S. Gross, “α-synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast,” Genetics, vol. 170, no. 1, pp. 47–59, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. A. A. Cooper, A. D. Gitler, A. Cashikar et al., “α-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models,” Science, vol. 313, no. 5785, pp. 324–328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Arimon, V. Grimminger, F. Sanz, and H. A. Lashuel, “Hsp104 targets multiple intermediates on the amyloid pathway and suppresses the seeding capacity of Aβ fibrils and protofibrils,” Journal of Molecular Biology, vol. 384, no. 5, pp. 1157–1173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Y. Sere, M. Regnacq, J. Colas, and T. Berges, “A Saccharomyces cerevisiae strain unable to store neutral lipids is tolerant to oxidative stress induced by α-synuclein,” Free Radical Biology and Medicine, vol. 49, no. 11, pp. 1755–1764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Büttner, A. Bitto, J. Ring et al., “Functional mitochondria are required for α-synuclein toxicity in aging yeast,” Journal of Biological Chemistry, vol. 283, no. 12, pp. 7554–7560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. L. J. Su, P. K. Auluck, T. F. Outeiro et al., “Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models,” DMM Disease Models and Mechanisms, vol. 3, no. 3-4, pp. 194–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Pilsl and K. F. Winklhofer, “Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease,” Acta Neuropathologica, vol. 123, pp. 173–188, 2012.
  80. J. H. Soper, S. Roy, A. Stieber et al., “α-synuclein-induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 19, no. 3, pp. 1093–1103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. A. D. Gitler, B. J. Bevis, J. Shorter et al., “The Parkinson's disease protein α-synuclein disrupts cellular Rab homeostasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 1, pp. 145–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. P. Zabrocki, I. Bastiaens, C. Delay et al., “Phosphorylation, lipid raft interaction and traffic of α-synuclein in a yeast model for Parkinson,” Biochimica et Biophysica Acta, vol. 1783, no. 10, pp. 1767–1780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. J. H. Soper, V. Kehm, C. G. Burd, V. A. Bankaitis, and V. M. Y. Lee, “Aggregation of α-synuclein in S. cerevisiae is associated with defects in endosomal trafficking and phospholipid biosynthesis,” Journal of Molecular Neuroscience, vol. 43, no. 3, pp. 391–405, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Zibaee, R. Jakes, G. Fraser, L. C. Serpell, R. A. Crowther, and M. Goedert, “Sequence determinants for amyloid fibrillogenesis of human α-synuclein,” Journal of Molecular Biology, vol. 374, no. 2, pp. 454–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. D. B. Oien, H. E. Shinogle, D. S. Moore, and J. Moskovitz, “Clearance and phosphorylation of alpha-synuclein are inhibited in methionine sulfoxide reductase a null yeast cells,” Journal of Molecular Neuroscience, vol. 39, no. 3, pp. 323–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Fiske, S. Valtierra, K. Solvang, et al., “Contribution of alanine-76 and serine phosphorylation in alpha-synuclein membrane association and aggregation in yeasts,” Parkinson's Disease, vol. 2011, Article ID 392180, 12 pages, 2011. View at Publisher · View at Google Scholar
  87. M. J. Volles and P. T. Lansbury, “Relationships between the sequence of α-synuclein and its membrane affinity, fibrillization propensity, and yeast toxicity,” Journal of Molecular Biology, vol. 366, no. 5, pp. 1510–1522, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Vamvaca, M. J. Volles, and P. T. Lansbury, “The first N-terminal amino acids of α-synuclein are essential for α-helical structure formation in vitro and membrane binding in yeast,” Journal of Molecular Biology, vol. 389, no. 2, pp. 413–424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. G. Griffioen, H. Duhamel, N. Van Damme et al., “A yeast-based model of α-synucleinopathy identifies compounds with therapeutic potential,” Biochimica et Biophysica Acta, vol. 1762, no. 3, pp. 312–318, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. C. H. Lee, J. K. Hyun, J. H. Lee et al., “Dequalinium-induced protofibril formation of α-synuclein,” Journal of Biological Chemistry, vol. 281, no. 6, pp. 3463–3472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Büttner, C. Delay, V. Franssens et al., “Synphilin-1 enhances a-synuclein aggregation in yeast and contributes to cellular stress and cell death in a sir2-dependent manner,” PLoS ONE, vol. 5, no. 10, Article ID e13700, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. J. E. Duda, B. I. Giasson, M. E. Mabon et al., “Concurrence of α-synuclein and tau brain pathology in the Contursi kindred,” Acta Neuropathologica, vol. 104, no. 1, pp. 7–11, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. P. Zabrocki, K. Pellens, T. Vanhelmont et al., “Characterization of α-synuclein aggregation and synergistic toxicity with protein tau in yeast,” The FEBS Journal, vol. 272, no. 6, pp. 1386–1400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. A. D. Gitler, A. Chesi, M. L. Geddie et al., “α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity,” Nature Genetics, vol. 41, no. 3, pp. 308–315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. J. Lee, S. Wang, S. R. Slone, T. A. Yacoubian, and S. N. Witt, “Defects in very long chain fatty acid synthesis enhance alpha-synuclein toxicity in a yeast model of Parkinson's disease,” PLoS ONE, vol. 6, no. 1, Article ID e15946, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. T. R. Flower, C. Clark-Dixon, C. Metoyer et al., “YGR198w (YPP1) targets A30P α-synuclein to the vacuole for degradation,” Journal of Cell Biology, vol. 177, no. 6, pp. 1091–1104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Liang, C. Clark-Dixon, S. Wang et al., “Novel suppressors of α-synuclein toxicity identified using yeast,” Human Molecular Genetics, vol. 17, no. 23, pp. 3784–3795, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. E. Yeger-Lotem, L. Riva, L. J. Su et al., “Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity,” Nature Genetics, vol. 41, no. 3, pp. 316–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. J. A. Kritzer, S. Hamamichi, J. M. McCaffery et al., “Rapid selection of cyclic peptides that reduce α-synuclein toxicity in yeast and animal models,” Nature Chemical Biology, vol. 5, no. 9, pp. 655–663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Katsuno, H. Banno, K. Suzuki et al., “Molecular genetics and biomarkers of polyglutamine diseases,” Current Molecular Medicine, vol. 8, no. 3, pp. 221–234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. J. P. Caviston and E. L. F. Holzbaur, “Huntingtin as an essential integrator of intracellular vesicular trafficking,” Trends in Cell Biology, vol. 19, no. 4, pp. 147–155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Krobitsch and S. Lindquist, “Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 4, pp. 1589–1594, 2000. View at Publisher · View at Google Scholar · View at Scopus
  103. P. J. Muchowski, G. Schaffar, A. Sittler, E. E. Wanker, M. K. Hayer-Hartl, and F. U. Hartl, “Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 14, pp. 7841–7846, 2000. View at Publisher · View at Google Scholar · View at Scopus
  104. A. B. Meriin, X. Zhang, X. He, G. P. Newnam, Y. O. Chernoff, and M. Y. Sherman, “Huntingtin toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1,” Journal of Cell Biology, vol. 157, no. 6, pp. 997–1004, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. M. L. Duennwald, S. Jagadish, F. Giorgini, P. J. Muchowski, and S. Lindquist, “A network of protein interactions determines polyglutamine toxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 29, pp. 11051–11056, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. N. V. Kochneva-Pervukhova, A. I. Alexandrov, M. D. Ter-Avanesyan, et al., “Amyloid-mediated sequestration of essential proteins contributes to mutant huntingtin toxicity in yeast,” PLoS ONE, vol. 7, Article ID e29832, 2012. View at Publisher · View at Google Scholar
  107. P. Chien, J. S. Weissman, and A. H. DePace, “Emerging principles of conformation-based prion inheritance,” Annual Review of Biochemistry, vol. 73, pp. 617–656, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. I. L. Derkatch, S. M. Uptain, T. F. Outeiro, R. Krishnan, S. L. Lindquist, and S. W. Liebman, “Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 35, pp. 12934–12939, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. P. M. Douglas, D. W. Summers, H. Y. Ren, and D. M. Cyr, “Reciprocal efficiency of RNQ1 and polyglutamine detoxification in the cytosol and nucleus,” Molecular Biology of the Cell, vol. 20, no. 19, pp. 4162–4173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. S. Tam, R. Geller, C. Spiess, and J. Frydman, “The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions,” Nature Cell Biology, vol. 8, no. 10, pp. 1155–1162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. K. C. Gokhale, G. P. Newnam, M. Y. Sherman, and Y. O. Chernoff, “Modulation of prion-dependent polyglutamine aggregation and toxicity by chaperone proteins in the yeast model,” Journal of Biological Chemistry, vol. 280, no. 24, pp. 22809–22818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. G. M. Walter, M. C. Smith, S. Wisen, et al., “Ordered assembly of heat shock proteins, Hsp26, Hsp70, Hsp90, and Hsp104, on expanded polyglutamine fragments revealed by chemical probes,” Journal of Biologial Chemistry, vol. 286, pp. 40486–40493, 2011.
  113. P. J. Muchowski, K. Ning, C. D'Souza-Schorey, and S. Fields, “Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 2, pp. 727–732, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. Y. Wang, A. B. Meriin, N. Zaarur et al., “Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery,” The FASEB Journal, vol. 23, no. 2, pp. 451–463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. A. B. Meriin, X. Zhang, I. M. Alexandrov et al., “Endocytosis machinery is involved in aggregation of proteins with expanded polyglutamine domains,” The FASEB Journal, vol. 21, no. 8, pp. 1915–1925, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. Y. Nagai, N. Fujikake, H. A. Popiel, and K. Wada, “Induction of molecular chaperones as a therapeutic strategy for the polyglutamine diseases,” Current Pharmaceutical Biotechnology, vol. 11, no. 2, pp. 188–197, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. B. Dehay and A. Bertolotti, “Critical role of the proline-rich region in Huntingtin for aggregation and cytotoxicity in yeast,” Journal of Biological Chemistry, vol. 281, no. 47, pp. 35608–35615, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. M. L. Duennwald, S. Jagadish, P. J. Muchowski, and S. Lindquist, “Flanking sequences profoundly after polyglutamine toxicity in yeast,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 29, pp. 11045–11050, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. R. E. Hughes, R. S. Lo, C. Davis et al., “Altered transcription in yeast expressing expanded polyglutamine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 23, pp. 13201–13206, 2001. View at Publisher · View at Google Scholar · View at Scopus
  120. M. L. Duennwald and S. Lindquist, “Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity,” Genes and Development, vol. 22, no. 23, pp. 3308–3319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. A. B. Meriin, X. Zhang, N. B. Miliaras et al., “Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis,” Molecular and Cellular Biology, vol. 23, no. 21, pp. 7554–7565, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Solans, A. Zambrano, M. Rodríguez, and A. Barrientos, “Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III,” Human Molecular Genetics, vol. 15, no. 20, pp. 3063–3081, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. S. Sokolov, A. Pozniakovsky, N. Bocharova, D. Knorre, and F. Severin, “Expression of an expanded polyglutamine domain in yeast causes death with apoptotic markers,” Biochimica et Biophysica Acta, vol. 1757, no. 5-6, pp. 660–666, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Ocampo, A. Zambrano, and A. Barrientos, “Suppression of polyglutamine-induced cytotoxicity in Saccharomyces cerevisiae by enhancement of mitochondrial biogenesis,” The FASEB Journal, vol. 24, no. 5, pp. 1431–1441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. N. A. Bocharova, S. S. Sokolov, D. A. Knorre, V. P. Skulachev, and F. F. Severin, “Unexpected link between anaphase promoting complex and the toxicity of expanded polyglutamines expressed in yeast,” Cell Cycle, vol. 7, no. 24, pp. 3943–3946, 2008. View at Scopus
  126. P. M. Joyner, R. M. Matheke, L. M. Smith, and R. H. Cichewicz, “Probing the metabolic aberrations underlying mutant huntingtin toxicity in yeast and assessing their degree of preservation in humans and mice,” Journal of Proteome Research, vol. 9, no. 1, pp. 404–412, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. F. Giorgini, P. Guidetti, Q. Nguyen, S. C. Bennett, and P. J. Muchowski, “A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease,” Nature Genetics, vol. 37, no. 5, pp. 526–531, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. R. Schwarcz, “The kynurenine pathway of tryptophan degradation as a drug target,” Current Opinion in Pharmacology, vol. 4, no. 1, pp. 12–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. F. Giorgini, T. Möller, W. Kwan et al., “Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia, and mice expressing a mutant huntingtin fragment,” Journal of Biological Chemistry, vol. 283, no. 12, pp. 7390–7400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. D. E. Ehrnhoefer, M. Duennwald, P. Markovic et al., “Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models,” Human Molecular Genetics, vol. 15, no. 18, pp. 2743–2751, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. X. Zhang, D. L. Smith, A. B. Meriin et al., “A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 892–897, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. R. A. Bodner, T. F. Outeiro, S. Altmann et al., “Pharmacological promotion of inclusion formation: a therapeutic approach for Huntington's and Parkinson's diseases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 11, pp. 4246–4251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  133. S. Sarkar, E. O. Perlstein, S. Imarisio et al., “Small molecules enhance autophagy and reduce toxicity in Huntington's disease models,” Nature Chemical Biology, vol. 3, no. 6, pp. 331–338, 2007. View at Publisher · View at Google Scholar · View at Scopus