About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 956345, 14 pages
http://dx.doi.org/10.1155/2012/956345
Review Article

Trends in Tissue Engineering for Blood Vessels

1Regenerative Medicine Laboratory, Stem Cell Research Center, Department of Biomedical Science and Technology, SMART Institute of Advanced Biomedical Science, Konkuk University, 143-701 Seoul, Republic of Korea
2Department of Chemical and Biological Engineering, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
3Department of Orthopedic Surgery, Yonsei Sarang Hospital, 137-820 Seoul, Republic of Korea

Received 18 July 2012; Accepted 25 September 2012

Academic Editor: Brynn Levy

Copyright © 2012 Judee Grace Nemeno-Guanzon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. L. Roger, A. S. Go, D. M. Lloyd-Jones et al., “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation, vol. 125, no. 1, pp. e2–e220, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Zaragoza, C. Gomez-Guerrero, J. L. Martin-Ventura, et al., “Animal models of cardiovascular diseases,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 497841, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. H. M. Nugent and E. R. Edelman, “Tissue engineering therapy for cardiovascular disease,” Circulation Research, vol. 92, no. 10, pp. 1068–1078, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. L. Platt, “Preface: future approaches to replacement of organs,” American Journal of Transplantation, vol. 4, no. 6, pp. 5–6, 2004. View at Scopus
  5. B. Ogle, M. Cascalho, and J. L. Platt, “Fusion of approaches to the treatment of organ failure,” American Journal of Transplantation, vol. 4, supplement 6, pp. 74–77, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Yang, M. Yamato, C. Kohno et al., “Cell sheet engineering: recreating tissues without biodegradable scaffolds,” Biomaterials, vol. 26, no. 33, pp. 6415–6422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. N. L'Heureux, N. Dusserre, A. Marini, S. Garrido, L. de la Fuente, and T. McAllister, “Technology insight: the evolution of tissue-engineered vascular grafts—from research to clinical practice,” Nature Clinical Practice Cardiovascular Medicine, vol. 4, no. 7, pp. 389–395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. R. Porter, T. T. Ruckh, and K. C. Popat, “Bone tissue engineering: a review in bone biomimetics and drug delivery strategies,” Biotechnology Progress, vol. 25, no. 6, pp. 1539–1560, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Ji, Y. Sun, F. Yang et al., “Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications,” Pharmaceutical Research, vol. 28, no. 6, pp. 1259–1272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. P. Vacanti and R. Langer, “Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation,” The Lancet, vol. 354, supplement 1, pp. S32–S34, 1999. View at Scopus
  11. B. S. Kim and D. J. Mooney, “Development of biocompatible synthetic extracellular matrices for tissue engineering,” Trends in Biotechnology, vol. 16, no. 5, pp. 224–230, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Demirbag, P. Y. Huri, G. T. Kose, A. Buyuksungur, and V. Hasirci, “Advanced cell therapies with and without scaffolds,” Biotechnology Journal, vol. 6, no. 12, pp. 1437–1453, 2011.
  13. T. C. Flanagan and A. Pandit, “Living artificial heart valve alternatives: a review,” European Cells and Materials, vol. 6, pp. 28–45, 2003. View at Scopus
  14. R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993. View at Scopus
  15. M. D. Rosenberg, “Cell guidance by alterations in monomolecular films,” Science, vol. 139, no. 3553, pp. 411–412, 1963. View at Scopus
  16. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, “Potential of nanofiber matrix as tissue-engineering scaffolds,” Tissue Engineering, vol. 11, no. 1-2, pp. 101–109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. W. Nichol and A. Khademhosseini, “Modular tissue engineering: engineering biological tissues from the bottom up,” Soft Matter, vol. 5, no. 7, pp. 1312–1319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Ravi and E. L. Chaikof, “Biomaterials for vascular tissue engineering,” Regenerative Medicine, vol. 5, no. 1, pp. 107–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. C. Rizzi, M. Ehrbar, S. Halstenberg et al., “Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics,” Biomacromolecules, vol. 7, no. 11, pp. 3019–3029, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Grabow, K. Schmohl, A. Khosravi et al., “Mechanical and structural properties of a novel hybrid heart valve scaffold for tissue engineering,” Artificial Organs, vol. 28, no. 11, pp. 971–979, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. D. S. Vara, H. J. Salacinski, R. Y. Kannan, L. Bordenave, G. Hamilton, and A. M. Seifalian, “Cardiovascular tissue engineering: state of the art,” Pathologie Biologie, vol. 53, no. 10, pp. 599–612, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Berger, L. R. Sauvage, A. M. Rao, and S. J. Wood, “Healing of arterial prostheses in man: its incompleteness,” Annals of Surgery, vol. 175, no. 1, pp. 118–127, 1972. View at Scopus
  23. R. F. Furchgott and J. V. Zawadzki, “The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine,” Nature, vol. 288, no. 5789, pp. 373–376, 1980. View at Scopus
  24. I. Autio, U. Malo-Ranta, O. P. Kallioniemi, and T. Nikkari, “Cultured bovine aortic endothelial cells secrete factor(s) chemotactic for aortic smooth muscle cells,” Artery, vol. 16, no. 2, pp. 72–83, 1989. View at Scopus
  25. M. I. Cybulsky and M. A. Gimbrone Jr., “Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis,” Science, vol. 251, no. 4995, pp. 788–791, 1991. View at Scopus
  26. W. Casscells, “Migration of smooth muscle and endothelial cells: critical events in restenosis,” Circulation, vol. 86, no. 3, pp. 723–729, 1992. View at Scopus
  27. M. W. Majesky, X. R. Dong, V. Hoglund, W. M. Mahoney Jr., and G. Daum, “The adventitia: a dynamic interface containing resident progenitor cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 7, pp. 1530–1539, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. C.-W. Chen, M. Corselli, B. Péault, and J. Huard, “Human blood-vessel-derived stem cells for tissue repair and regeneration,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 597439, 9 pages, 2012. View at Publisher · View at Google Scholar
  29. Y. Y. Chen, C. W. Liu, W. Ye, R. Zhang, Y. S. Wei, and D. P. Liu, “Effects of Batroxobin on distal anastomotic intimal hyperplasia after expanded polytetrafluoroethylene bypass grafting in dog common carotid artery,” Zhonghua Yi Xue Za Zhi, vol. 89, no. 1, pp. 48–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. N. Wilcox and N. A. Scott, “Potential role of the adventitia in arteritis and atherosclerosis,” International Journal of Cardiology, vol. 54, supplement, pp. S21–S35, 1996. View at Scopus
  31. M. Parizek, K. Novotna, and L. Bacakova, “The role of smooth muscle cells in vessel wall pathophysiology and reconstruction using bioactive synthetic polymers,” Physiological Research, vol. 60, no. 3, pp. 419–437, 2011. View at Scopus
  32. R. Ross, “The pathogenesis of atherosclerosis: a perspective for the 1990s,” Nature, vol. 362, no. 6423, pp. 801–809, 1993. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Moriyama, S. Kubota, H. Tashiro, and H. Tonami, “Evaluation of prosthetic venous valves, fabricated by electrospinning, for percutaneous treatment of chronic venous insufficiency,” Journal of Artificial Organs, vol. 14, no. 4, pp. 294–300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Klinkert, P. N. Post, P. J. Breslau, and J. H. van Bockel, “Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature,” European Journal of Vascular and Endovascular Surgery, vol. 27, no. 4, pp. 357–362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. E. D. Foster and M. A. T. Kranc, “Alternative conduits for aortocoronary bypass grafting,” Circulation, vol. 79, no. 6, part 2, pp. I34–I39, 1989. View at Scopus
  36. B. C. Isenberg, C. Williams, and R. T. Tranquillo, “Small-diameter artificial arteries engineered in vitro,” Circulation Research, vol. 98, no. 1, pp. 25–35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. M. S. Conte, “The ideal small arterial substitute: a search for the Holy Grail?” The FASEB Journal, vol. 12, no. 1, pp. 43–45, 1998. View at Scopus
  38. M. Poh, M. Boyer, A. Solan et al., “Blood vessels engineered from human cells,” The Lancet, vol. 365, no. 9477, pp. 2122–2124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Kelm, V. Lorber, J. G. Snedeker et al., “A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks,” Journal of Biotechnology, vol. 148, no. 1, pp. 46–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. R. M. Nerem and A. E. Ensley, “The tissue engineering of blood vessels and the heart,” American Journal of Transplantation, vol. 4, supplement 6, pp. 36–42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. C. B. Weinberg and E. Bell, “A blood vessel model constructed from collagen and cultured vascular cells,” Science, vol. 231, no. 4736, pp. 397–400, 1986. View at Scopus
  42. C. Wang, L. Cen, S. Yin et al., “A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells,” Biomaterials, vol. 31, no. 4, pp. 621–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Hu, C. Xie, H. Ma, B. Yang, P. X. Ma, and Y. E. Chen, “Construction of vascular tissues with macro-porous nano-fibrous scaffolds and smooth muscle cells enriched from differentiated embryonic stem cells,” PLoS One, vol. 7, no. 4, Article ID e35580, 2012.
  44. F. P. Barry and J. M. Murphy, “Mesenchymal stem cells: clinical applications and biological characterization,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 4, pp. 568–584, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Weinzierl, A. Hemprich, and B. Frerich, “Bone engineering with adipose tisssue derived stromal cells,” Journal of Cranio-Maxillofacial Surgery, vol. 34, no. 8, pp. 466–471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Zhu, T. Liu, K. Song, X. Fan, X. Ma, and Z. Cui, “Adipose-derived stem cell: a better stem cell than BMSC,” Cell Biochemistry and Function, vol. 26, no. 6, pp. 664–675, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. S. H. Bhang, S. W. Cho, J. M. Lim et al., “Locally delivered growth factor enhances the angiogenic efficacy of adipose-derived stromal cells transplanted to ischemic limbs,” Stem Cells, vol. 27, no. 8, pp. 1976–1986, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Rubina, N. Kalinina, A. Efimenko et al., “Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation,” Tissue Engineering A, vol. 15, no. 8, pp. 2039–2050, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. T. J. Lee, S. H. Bhang, H. S. Yang et al., “Enhancement of long-term angiogenic efficacy of adipose stem cells by delivery of FGF2,” Microvascular Research, vol. 84, no. 1, pp. 1–8, 2012.
  51. A. Sterodimas, J. de Faria, B. Nicaretta, and I. Pitanguy, “Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 63, no. 11, pp. 1886–1892, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Levenberg, J. S. Golub, M. Amit, J. Itskovitz-Eldor, and R. Langer, “Endothelial cells derived from human embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 7, pp. 4391–4396, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Hristov, W. Erl, and P. C. Weber, “Endothelial progenitor cells: mobilization, differentiation, and homing,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 7, pp. 1185–1189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. M. T. Hinds, M. Ma, N. Tran et al., “Potential of baboon endothelial progenitor cells for tissue engineered vascular grafts,” Journal of Biomedical Materials Research A, vol. 86, no. 3, pp. 804–812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. X. Wu, E. Rabkin-Aikawa, K. J. Guleserian et al., “Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells,” American Journal of Physiology, vol. 287, no. 2, pp. H480–H487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. Hill, G. Zalos, J. P. J. Halcox et al., “Circulating endothelial progenitor cells, vascular function, and cardiovascular risk,” The New England Journal of Medicine, vol. 348, no. 7, pp. 593–600, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Kawamoto, T. Asahara, and D. W. Losordo, “Transplantation of endothelial progenitor cells for therapeutic neovascularization,” Cardiovascular Radiation Medicine, vol. 3, no. 3-4, pp. 221–225, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Shirota, H. He, H. Yasui, and T. Matsuda, “Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabrication processing,” Tissue Engineering, vol. 9, no. 1, pp. 127–136, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Kaushal, G. E. Amiel, K. J. Guleserian et al., “Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo,” Nature Medicine, vol. 7, no. 9, pp. 1035–1040, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. A. A. Kocher, M. D. Schuster, M. J. Szabolcs et al., “Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function,” Nature Medicine, vol. 7, no. 4, pp. 430–436, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. B. Assmus, V. Schächinger, C. Teupe et al., “Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI),” Circulation, vol. 106, no. 24, pp. 3009–3017, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Pesce, A. Orlandi, M. G. Iachininoto et al., “Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues,” Circulation Research, vol. 93, no. 5, pp. e51–e62, 2003. View at Scopus
  63. S. W. Cho, S. H. Lim, I. K. Kim et al., “Small-diameter blood vessels engineered with bone marrow-derived cells,” Annals of Surgery, vol. 241, no. 3, pp. 506–515, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. S. Yoon, J. S. Park, T. Tkebuchava, C. Luedeman, and D. W. Losordo, “Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction,” Circulation, vol. 109, no. 25, pp. 3154–3157, 2004. View at Scopus
  65. J. S. Schechner, A. K. Nath, L. Zheng et al., “In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 16, pp. 9191–9196, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. S. E. Hughes, “Functional characterization of the spontaneously transformed human umbilical vein endothelial cell line ECV304: use in an in vitro model of angiogenesis,” Experimental Cell Research, vol. 225, no. 1, pp. 171–185, 1996. View at Publisher · View at Google Scholar · View at Scopus
  67. L. E. Niklason, J. Gao, W. M. Abbott et al., “Functional arteries grown in vitro,” Science, vol. 284, no. 5413, pp. 489–493, 1999. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Buttafoco, P. Engbers-Buijtenhuijs, A. A. Poot, P. J. Dijkstra, I. Vermes, and J. Feijen, “Physical characterization of vascular grafts cultured in a bioreactor,” Biomaterials, vol. 27, no. 11, pp. 2380–2389, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Zhang, Q. Ao, A. Wang et al., “A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering,” Journal of Biomedical Materials Research A, vol. 77, no. 2, pp. 277–284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Gao, A. E. Ensley, R. M. Nerem, and Y. Wang, “Poly(glycerol sebacate) supports the proliferation and phenotypic protein expression of primary baboon vascular cells,” Journal of Biomedical Materials Research A, vol. 83, no. 4, pp. 1070–1075, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. Z. C. Xu, W. J. Zhang, H. Li et al., “Engineering of an elastic large muscular vessel wall with pulsatile stimulation in bioreactor,” Biomaterials, vol. 29, no. 10, pp. 1464–1472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. B. R. Shepherd, S. M. Jay, W. M. Saltzman, G. Tellides, and J. S. Pober, “Human aortic smooth muscle cells promote arteriole formation by coengrafted endothelial cells,” Tissue Engineering A, vol. 15, no. 1, pp. 165–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. G. Matsumura, N. Nitta, S. Matsuda et al., “Long-term results of cell-free biodegradable scaffolds for in situ tissue-engineering vasculature: in a canine inferior vena cava model,” PLoS One, vol. 7, no. 4, Article ID e35760, 2012.
  74. P.-H. Lee, S.-H. Tsai, L. Kuo, et al., “A prototype tissue engineered blood vessel using amniotic membrane as scaffold,” Acta Biomaterialia, vol. 8, no. 9, pp. 3342–3348, 2012.
  75. M. T. McClendon and S. I. Stupp, “Tubular hydrogels of circumferentially aligned nanofibers to encapsulate and orient vascular cells,” Biomaterials, vol. 33, no. 23, pp. 5713–5722, 2012.
  76. N. L'Heureux, S. Pâquet, R. Labbé, L. Germain, and F. A. Auger, “A completely biological tissue-engineered human blood vessel,” The FASEB Journal, vol. 12, no. 1, pp. 47–56, 1998. View at Scopus
  77. L. Germain, M. Remy-Zolghadri, and F. Auger, “Tissue engineering of the vascular system: from capillaries to larger blood vessels,” Medical and Biological Engineering and Computing, vol. 38, no. 2, pp. 232–240, 2000. View at Scopus
  78. H. Ozaki and H. Karaki, “Organ culture as a useful method for studying the biology of blood vessels and other smooth muscle tissues,” Japanese Journal of Pharmacology, vol. 89, no. 2, pp. 93–100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. N. L'Heureux, N. Dusserre, G. Konig et al., “Human tissue-engineered blood vessels for adult arterial revascularization,” Nature Medicine, vol. 12, no. 3, pp. 361–365, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Norotte, F. S. Marga, L. E. Niklason, and G. Forgacs, “Scaffold-free vascular tissue engineering using bioprinting,” Biomaterials, vol. 30, no. 30, pp. 5910–5917, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Chaterji, K. Park, and A. Panitch, “Scaffold-free in vitro arterial mimetics: the importance of smooth muscle-endothelium contact,” Tissue Engineering A, vol. 16, no. 6, pp. 1901–1912, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. Z. H. Syedain, L. A. Meier, J. W. Bjork, A. Lee, and R. T. Tranquillo, “Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring,” Biomaterials, vol. 32, no. 3, pp. 714–722, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Zhao, L. Liu, J. Wei et al., “A novel strategy to engineer small-diameter vascular grafts from marrow-derived mesenchymal stem cells,” Artificial Organs, vol. 36, no. 1, pp. 93–101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. L. Bacakova, E. Filova, F. Rypacek, V. Svorcik, and V. Stary, “Cell adhesion on artificial materials for tissue engineering,” Physiological Research, vol. 53, supplement 1, pp. S35–S45, 2004.
  85. L. Bacakova, E. Filova, D. Kubies et al., “Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides,” Journal of Materials Science, vol. 18, no. 7, pp. 1317–1323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Bacakova, “Cell colonization control by physical and chemical modification of materials,” in Cell Growth Processes: New Research, D. Kimura, Ed., pp. 5–56, Nova Science, Huntington, NY, USA, 2008.
  87. M. Herring, A. Gardner, and J. Glover, “A single staged technique for seeding vascular grafts with autogenous endothelium,” Surgery, vol. 84, no. 4, pp. 498–504, 1978. View at Scopus
  88. I. Martin, D. Wendt, and M. Heberer, “The role of bioreactors in tissue engineering,” Trends in Biotechnology, vol. 22, no. 2, pp. 80–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. J. H. Brauker, V. E. Carr-Brendel, L. A. Martinson, J. Crudele, W. D. Johnston, and R. C. Johnson, “Neovascularization of synthetic membranes directed by membrane microarchitecture,” Journal of Biomedical Materials Research, vol. 29, no. 12, pp. 1517–1524, 1995. View at Publisher · View at Google Scholar · View at Scopus
  90. M. C. Peters, P. J. Polverini, and D. J. Mooney, “Engineering vascular networks in porous polymer matrices,” Journal of Biomedical Materials Research, vol. 60, no. 4, pp. 668–678, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. E. Oragui, M. Nannaparaju, and W. S. Khan, “The role of bioreactors in tissue engineering for musculoskeletal applications,” The Open Orthopaedics Journal, vol. 5, supplement 2, pp. 267–270, 2011.
  92. N. Plunkett and F. J. O'Brien, “IV.3. bioreactors in tissue engineering,” Studies in Health Technology and Informatics, vol. 152, pp. 214–230, 2010.
  93. T. M. Nakamura, G. B. Morin, K. B. Chapman et al., “Telomerase catalytic subunit homologs from fission yeast and human,” Science, vol. 277, no. 5328, pp. 955–959, 1997. View at Publisher · View at Google Scholar · View at Scopus
  94. X. R. Jiang, G. Jimenez, E. Chang et al., “Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype,” Nature Genetics, vol. 21, no. 1, pp. 111–1114, 1999. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Simionescu, J. B. Schulte, G. Fercana, and D. T. Simionescu, “Inflammation in cardiovascular tissue engineering: the challenge to a promise: a minireview,” International Journal of Inflammation, vol. 2011, Article ID 958247, 11 pages, 2011. View at Publisher · View at Google Scholar
  96. J. I. Lee, M. Sato, H. W. Kim, and J. Mochida, “Transplantatation of scaffold-free spheroids composed of synovium-derived cells and chondrocytes for the treatment of cartilage defects of the knee,” European Cells and Materials Journal, vol. 22, pp. 275–290, 2011.