About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 973140, 8 pages
http://dx.doi.org/10.1155/2012/973140
Research Article

BAC-Dkk3-EGFP Transgenic Mouse: An In Vivo Analytical Tool for Dkk3 Expression

1JST, CREST, 3-2 Yamadaoka, Osaka, Suita 565-0871, Japan
2Department of Developmental Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Osaka, Suita 565-0874, Japan
3Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita 565-0871, Japan

Received 15 February 2012; Revised 19 April 2012; Accepted 3 May 2012

Academic Editor: Thomas Lufkin

Copyright © 2012 Yuki Muranishi and Takahisa Furukawa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. E. Krupnik, J. D. Sharp, C. Jiang et al., “Functional and structural diversity of the human Dickkopf gene family,” Gene, vol. 238, no. 2, pp. 301–313, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Niehrs, “Function and biological roles of the Dickkopf family of Wnt modulators,” Oncogene, vol. 25, no. 57, pp. 7469–7481, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. V. Semënov, K. Tamai, B. K. Brott, M. Kühl, S. Sokol, and X. X. He, “Head inducer dickkopf-1 is a ligand for Wnt coreceptor LRP6,” Current Biology, vol. 11, no. 12, pp. 951–961, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Bafico, G. Liu, A. Yaniv, A. Gazit, and S. A. Aaronson, “Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow,” Nature Cell Biology, vol. 3, no. 7, pp. 683–686, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Mao, W. Wu, Y. Li et al., “LDL-receptor-related protein 6 is a receptor for Dickkopf proteins,” Nature, vol. 411, no. 6835, pp. 321–325, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. E. J. Lee, M. Jo, S. B. Rho et al., “Dkk3, downregulated in cervical cancer, functions as a negative regulator of β-catenin,” International Journal of Cancer, vol. 124, no. 2, pp. 287–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Sato, T. Inoue, K. Terada et al., “Dkk3-Cre BAC transgenic mouse line: a tool for highly efficient gene deletion in retinal progenitor cells,” Genesis, vol. 45, no. 8, pp. 502–507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. Ang, R. J. W. Stump, F. J. Lovicu, and J. W. McAvoy, “Spatial and temporal expression of Wnt and Dickkopf genes during murine lens development,” Gene Expression Patterns, vol. 4, no. 3, pp. 289–295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. D. B. Diep, N. Hoen, M. Backman, O. MacHon, and S. Krauss, “Characterisation of the Wnt antagonists and their response to conditionally activated Wnt signalling in the developing mouse forebrain,” Developmental Brain Research, vol. 153, no. 2, pp. 261–270, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. S. Hackam, R. Strom, D. Liu et al., “Identification of gene expression changes associated with the progression of retinal degeneration in the rd1 mouse,” Investigative Ophthalmology and Visual Science, vol. 45, no. 9, pp. 2929–2942, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. P. Monaghan, P. Kioschis, W. Wu et al., “Dickkopf genes are co-ordinately expressed in mesodermal lineages,” Mechanisms of Development, vol. 87, no. 1-2, pp. 45–56, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Katoh, Y. Omori, A. Onishi, S. Sato, M. Kondo, and T. Furukawa, “Blimp1 suppresses Chx10 expression in differentiating retinal photoreceptor precursors to ensure proper photoreceptor development,” Journal of Neuroscience, vol. 30, no. 19, pp. 6515–6526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Iida, T. Shinoe, Y. Baba, H. Mano, and S. Watanabe, “Dicer plays essential roles for retinal development by regulation of survival and differentiation,” Investigative Ophthalmology and Visual Science, vol. 52, no. 6, pp. 3008–3017, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Ogata-Iwao, M. Inatani, K. Iwao et al., “Heparan sulfate regulates intraretinal axon pathfinding by retinal ganglion cells,” Investigative Ophthalmology & Visual Science, vol. 52, no. 9, pp. 6671–6679, 2011. View at Scopus
  15. X. W. Yang, P. Model, and N. Heintz, “Homologous recombination based modification in Esherichia coli and germline transmission in transgenic mice of a bacterial artificial chromsome,” Nature Biotechnology, vol. 15, no. 9, pp. 859–865, 1997. View at Scopus
  16. A. Nishida, A. Furukawa, C. Koike et al., “Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development,” Nature Neuroscience, vol. 6, no. 12, pp. 1255–1263, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Gong, C. Zheng, M. L. Doughty et al., “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes,” Nature, vol. 425, no. 6961, pp. 917–925, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Heintz, “BAC to the future: the use of BAC Transgenic mice for neuroscience research,” Nature Reviews Neuroscience, vol. 2, no. 12, pp. 861–870, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. A. P. Jadhav, K. Roesch, and C. L. Cepko, “Development and neurogenic potential of Müller glial cells in the vertebrate retina,” Progress in Retinal and Eye Research, vol. 28, no. 4, pp. 249–262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. J. Fischer and R. Bongini, “Turning Müller glia into neural progenitors in the retina,” Molecular Neurobiology, vol. 42, no. 3, pp. 199–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. J. Fischer and T. A. Reh, “Müller glia are a potential source of neural regeneration in the postnatal chicken retina,” Nature Neuroscience, vol. 4, no. 3, pp. 247–252, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. Fischer, “Neural regeneration in the chick retina,” Progress in Retinal and Eye Research, vol. 24, no. 2, pp. 161–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. J. Fischer, M. A. Scott, and W. Tuten, “Mitogen-activated protein kinase-signaling stimulates Müller glia to proliferate in acutely damaged chicken retina,” Glia, vol. 57, no. 2, pp. 166–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Hayes, B. R. Nelson, B. Buckingham, and T. A. Reh, “Notch signaling regulates regeneration in the avian retina,” Developmental Biology, vol. 312, no. 1, pp. 300–311, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. A. J. Fischer, M. A. Scott, E. R. Ritchey, and P. Sherwood, “Mitogen-activated protein kinase-signaling regulates the ability of Müller glia to proliferate and protect retinal neurons against excitotoxicity,” Glia, vol. 57, no. 14, pp. 1538–1552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Yao, E. Ashihara, and T. Maekawa, “Targeting the Wnt/β-catenin signaling pathway in human cancers,” Expert Opinion on Therapeutic Targets, vol. 15, no. 7, pp. 873–887, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. J. R. Prosperi and K. H. Goss, “A Wnt-ow of opportunity: targeting the Wnt/β-catenin pathway in breast cancer,” Current Drug Targets, vol. 11, no. 9, pp. 1074–1088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Herbst and F. T. Kolligs, “Wnt signaling as a therapeutic target for cancer,” Methods in Molecular Biology, vol. 361, pp. 63–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Tsuji, M. Miyazaki, M. Sakaguchi, Y. Inoue, and M. Namba, “A REIC gene shows down-regulation in human immortalized cells and human tumor-derived cell lines,” Biochemical and Biophysical Research Communications, vol. 268, no. 1, pp. 20–24, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Veeck and E. Dahl, “Targeting the Wnt pathway in cancer: the emerging role of Dickkopf-3,” Biochimica et Biophysica Acta, vol. 1825, no. 1, pp. 18–28, 2012. View at Publisher · View at Google Scholar · View at Scopus