About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 981321, 9 pages
http://dx.doi.org/10.1155/2012/981321
Research Article

Enhanced Hemostatic Performance of Tranexamic Acid-Loaded Chitosan/Alginate Composite Microparticles

State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China

Received 21 March 2012; Accepted 1 October 2012

Academic Editor: Bernd H. A. Rehm

Copyright © 2012 Donghong Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. R. Champion, R. F. Bellamy, C. P. Roberts, and A. Leppaniemi, “A profile of combat injury,” Journal of Trauma, vol. 54, no. 5, pp. S13–S19, 2003. View at Scopus
  2. A. Sauaia, F. A. Moore, E. E. Moore et al., “Epidemiology of trauma deaths: a reassessment,” Journal of Trauma, vol. 38, no. 2, pp. 185–193, 1995. View at Scopus
  3. A. E. Pusateri, J. B. Holcomb, B. S. Kheirabadi, H. B. Alam, C. E. Wade, and K. L. Ryan, “Making sense of the preclinical literature on advanced hemostatic products,” The Journal of Trauma, vol. 60, no. 3, pp. 674–682, 2006. View at Scopus
  4. H. B. Alam, D. Burris, J. A. Dacorta, and P. Rhee, “Hemorrhage control in the battlefield: role of new hemostatic agents,” Military Medicine, vol. 170, no. 1, pp. 63–69, 2005. View at Scopus
  5. J. N. Vournakis, M. Demcheva, A. B. Whitson, S. Finkielsztein, and R. J. Connolly, “The RDH Bandage: hemostasis and survival in a lethal aortotomy hemorrhage model,” Journal of Surgical Research, vol. 113, no. 1, pp. 1–5, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. B. S. Kheirabadi, E. M. Acheson, R. Deguzman et al., “The potential utility of fibrin sealant dressing in repair of vascular injury in swine,” Journal of Trauma, vol. 62, no. 1, pp. 94–103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. H. Baik, J. H. Kim, H. H. Cho, S. N. Park, Y. S. Kim, and H. Suh, “Development and analysis of a collagen-based hemostatic adhesive,” Journal of Surgical Research, vol. 164, no. 2, pp. e221–e228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. E. Pusateri, J. B. Holcomb, B. S. Kheirabadi, H. B. Alam, C. E. Wade, and K. L. Ryan, “Making sense of the preclinical literature on advanced hemostatic products,” Journal of Trauma, vol. 60, no. 3, pp. 674–682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. E. Pusateri, A. V. Delgado, E. J. Dick, R. S. Martinez, J. B. Holcomb, and K. L. Ryan, “Application of a granular mineral-based hemostatic agent (QuikClot) to reduce blood loss after grade V liver injury in swine,” Journal of Trauma, vol. 57, no. 3, pp. 555–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. H. B. Alam, Z. Chen, A. Jaskille et al., “Application of a zeolite hemostatic agent achieves 100% survival in a lethal model of complex groin injury in swine,” Journal of Trauma, vol. 56, no. 5, pp. 974–983, 2004. View at Scopus
  11. J. K. Wright, J. Kalns, E. A. Wolf et al., “Thermal injury resulting from application of a granular mineral hemostatic agent,” Journal of Trauma, vol. 57, no. 2, pp. 224–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. T. R. Hurtado and T. Wisenbaugh, “Images in emergency medicine: superficial partial-thickness (second-degree) burn from zeolite mineral hemostatic agent (QuickClot [Z-Medica, Newington, CT]),” Annals of Emergency Medicine, vol. 46, no. 3, pp. 297–303, 2005.
  13. T. Dai, G. P. Tegos, M. Burkatovskaya, A. P. Castano, and M. R. Hamblin, “Chitosan acetate bandage as a topical antimicrobial dressing for infected burns,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 2, pp. 393–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Raafat, K. Von Bargen, A. Haas, and H. G. Sahl, “Insights into the mode of action of chitosan as an antibacterial compound,” Applied and Environmental Microbiology, vol. 74, no. 12, pp. 3764–3773, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Burkatovskaya, G. P. Tegos, E. Swietlik, T. N. Demidova, A. P Castano, and M. R. Hamblin, “Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice,” Biomaterials, vol. 27, no. 22, pp. 4157–4164, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. K. Azad, N. Sermsintham, S. Chandrkrachang, and W. F. Stevens, “Chitosan membrane as a wound-healing dressing: characterization and clinical application,” Journal of Biomedical Materials Research B, vol. 69, no. 2, pp. 216–222, 2004. View at Scopus
  17. K. Kojima, Y. Okamoto, K. Kojima et al., “Effects of chitin and chitosan on collagen synthesis in wound healing,” Journal of Veterinary Medical Science, vol. 66, no. 12, pp. 1595–1598, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. E. Pusateri, S. J. McCarthy, K. W. Gregory et al., “Effect of a chitosan-based hemostatic dressing on blood loss and survival in a model of severe venous hemorrhage and hepatic injury in swine,” Journal of Trauma, vol. 54, no. 1, pp. 177–182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Y. Sohn, M. J. Eckert, M. J. Martin et al., “Efficacy of three topical hemostatic agents applied by medics in a lethal groin injury model,” Journal of Surgical Research, vol. 154, no. 2, pp. 258–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Y. Ong, J. Wu, S. M. Moochhala, M. H. Tan, and J. Lu, “Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties,” Biomaterials, vol. 29, no. 32, pp. 4323–4332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. R. L. Gardner, “Application of alginate gels to the study of Mammalian development,” Methods in Molecular Biology, vol. 254, pp. 383–392, 2004. View at Scopus
  22. M. Lee, W. Li, R. K. Siu et al., “Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers,” Biomaterials, vol. 30, no. 30, pp. 6094–6101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?” Biomaterials, vol. 27, no. 15, pp. 2907–2915, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Liu, C. Hou, and Q. Gu, “Preparation and evaluation of chitosan/alginate microsphere as a novel biodegradable haemostatic powder,” Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, vol. 21, no. 8, pp. 829–832, 2007. View at Scopus
  25. China Standards, “Biological evaluation of medical devices—part 5: test for in vitro cytotoxicity,” GB/T, 16886. 5-2003.
  26. X. Z. Shu and K. J. Zhu, “A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery,” International Journal of Pharmaceutics, vol. 201, no. 1, pp. 51–58, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. M. L. González-Rodríguez, M. A. Holgado, C. Sánchez-Lafuente, A. M. Rabasco, and A. Fini, “Alginate/chitosan particulate systems for sodium diclofenac release,” International Journal of Pharmaceutics, vol. 232, no. 1-2, pp. 225–234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. T. A. Becker, D. R. Kipke, and T. Brandon, “Calcium alginate gel: a biocompatible and mechanically stable polymer for endovascular embolization,” Journal of Biomedical Materials Research A, vol. 54, pp. 76–86, 2001.
  29. L. Oddo, G. Masci, C. Di Meo et al., “Novel thermosensitive calcium alginate microspheres: physico-chemical characterization and delivery properties,” Acta Biomaterialia, vol. 6, no. 9, pp. 3657–3664, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. K. Bhatia and A. B. Yetter, “Correlation of visual in vitro cytotoxicity ratings of biomaterials with quantitative in vitro cell viability measurements,” Cell Biology and Toxicology, vol. 24, no. 4, pp. 315–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. R. De Souza, P. Zahedi, C. J. Allen, and M. Piquette-Miller, “Biocompatibility of injectable chitosan-phospholipid implant systems,” Biomaterials, vol. 30, no. 23-24, pp. 3818–3824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. G. I. Howling, P. W. Dettmar, P. A. Goddard, F. C. Hampson, M. Dornish, and E. J. Wood, “The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro,” Biomaterials, vol. 22, no. 22, pp. 2959–2966, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. S. F. Nie, X. M. Wu, H. F. Liu, H. W. Jiang, and W. S. Pan, “Studies on the influencing factors on the drug release from sodium alginate matrices,” Yaoxue Xuebao, vol. 39, no. 7, pp. 561–565, 2004. View at Scopus
  34. P. Matricardi, C. Di Meo, T. Coviello, and F. Alhaique, “Recent advances and perspectives on coated alginate microspheres for modified drug delivery,” Expert Opinion on Drug Delivery, vol. 5, no. 4, pp. 417–425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. H. Hamman, “Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems,” Marine Drugs, vol. 8, no. 4, pp. 1305–1322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Zhou, Z. Huang, X. Cheng et al., “Clinical research on the treatment of acute trauma hemorrhage with quick-acting styptic powder,” China Journal Critical Care Medical, vol. 27, no. 6, pp. 521–524, 2007.
  37. Y. Okamoto, R. Yano, K. Miyatake, I. Tomohiro, Y. Shigemasa, and S. Minami, “Effects of chitin and chitosan on blood coagulation,” Carbohydrate Polymers, vol. 53, no. 3, pp. 337–342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Zhang, W. Xia, P. Liu et al., “Chitosan modification and pharmaceutical/biomedical applications,” Marine Drugs, vol. 8, no. 7, pp. 1962–1987, 2010. View at Publisher · View at Google Scholar · View at Scopus