About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 989263, 8 pages
http://dx.doi.org/10.1155/2012/989263
Research Article

Localization and Regulation of the N Terminal Splice Variant of PGC-1α in Adult Skeletal Muscle Fibers

Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201-1503, USA

Received 23 September 2011; Accepted 26 October 2011

Academic Editor: Aikaterini Kontrogianni-Konstantopoulos

Copyright © 2012 Tiansheng Shen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Puigserver, Z. Wu, C. W. Park, R. Graves, M. Wright, and B. M. Spiegelman, “A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis,” Cell, vol. 92, no. 6, pp. 829–839, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Lin, H. Wu, P. T. Tarr et al., “Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres,” Nature, vol. 418, no. 6899, pp. 797–801, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Wu, P. Puigserver, U. Andersson et al., “Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1,” Cell, vol. 98, no. 1, pp. 115–124, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. O. H. Mortensen, L. Frandsen, P. Schjerling, E. Nishimura, and N. Grunnet, “PGC-1α and PGC-1β have both similar and distinct effects on myofiber switching toward an oxidative phenotype,” American Journal of Physiology, Endocrinology and Metabolism, vol. 291, no. 4, pp. E807–E816, 2006. View at Publisher · View at Google Scholar
  5. A. S. Mathai, A. Bonen, C. R. Benton, D. L. Robinson, and T. E. Graham, “Rapid exercise-induced changes in PGC-1α mRNA and protein in human skeletal muscle,” Journal of Applied Physiology, vol. 105, no. 4, pp. 1098–1105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Terada and I. Tabata, “Effects of acute bouts of running and swimming exercise on PGC-1α protein expression in rat epitrochlearis and soleus muscle,” American Journal of Physiology, Endocrinology and Metabolism, vol. 286, no. 2, pp. E208–E216, 2004. View at Scopus
  7. D. Knutti, D. Kressler, and A. Kralli, “Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 17, pp. 9713–9718, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Puigserver, J. Rhee, J. Lin et al., “Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1,” Molecular Cell, vol. 8, no. 5, pp. 971–982, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Yan, P. Li, and T. Akimoto, “Transcriptional control of the Pgc-1α gene in skeletal muscle in vivo,” Exercise and Sport Sciences Reviews, vol. 35, no. 3, pp. 97–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Irrcher, P. J. Adhihetty, T. Sheehan, A. M. Joseph, and D. A. Hood, “PPARγ coactivator-1α expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations,” American Journal of Physiology—Cell Physiology, vol. 284, no. 6, pp. C1669–C1677, 2003. View at Scopus
  11. S. Jäer, C. Handschin, J. St-Pierre, and B. M. Spiegelman, “AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 12017–12022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Zhang, P. Huypens, A. W. Adamson et al., “Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1α,” Journal of Biological Chemistry, vol. 284, no. 47, pp. 32813–32826, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. S. Chang, P. Huypens, Y. Zhang, A. Kralli, and T. W. Gettys, “Regulation of NT-PGC-1α subcellular localization and function by protein kinase A-dependent modulation of nuclear export by CRM1,” Journal of Biological Chemistry, vol. 285, no. 23, pp. 18039–18050, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Trausch-Azar, T. C. Leone, D. P. Kelly, and A. L. Schwartz, “Ubiquitin proteasome-dependent degradation of the transcriptional coactivator PGC-1α via the N-terminal pathway,” Journal of Biological Chemistry, vol. 285, no. 51, pp. 40192–40200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Liu, S. L. Carroll, M. G. Klein, and M. F. Schneider, “Calcium transients and calcium homeostasis in adult mouse fast-twitch skeletal muscle fibers in culture,” American Journal of Physiology—Cell Physiology, vol. 272, no. 6, pp. C1919–C1927, 1997. View at Scopus
  16. Y. Liu, Z. Cseresnyés, W. R. Randall, and M. F. Schneider, “Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers,” Journal of Cell Biology, vol. 155, no. 1, pp. 27–39, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Shen, Y. Liu, M. Contreras, E. O. Hernández-Ochoa, W. R. Randall, and M. F. Schneider, “DNA binding sites target nuclear NFATc1 to heterochromatin regions in adult skeletal muscle fibers,” Histochemistry and Cell Biology, vol. 134, no. 4, pp. 387–402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Shen, Y. Liu, Z. Cseresnyés, A. Hawkins, W. R. Randall, and M. F. Schneider, “Activity- and calcineurin-independent nuclear shuttling of NFATc1, but Not NFATc3, in adult skeletal muscle fibers,” Molecular Biology of the Cell, vol. 17, no. 4, pp. 1570–1582, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Liu, W. R. Randall, and M. F. Schneider, “Activity-dependent and -independent nuclear fluxes of HDAC4 mediated by different kinases in adult skeletal muscle,” Journal of Cell Biology, vol. 168, no. 6, pp. 887–897, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. R. C. Ho, N. Fujii, L. A. Witters, M. F. Hirshman, and L. J. Goodyear, “Dissociation of AMP-activated protein kinase and p38 mitogen-activated protein kinase signaling in skeletal muscle,” Biochemical and Biophysical Research Communications, vol. 362, no. 2, pp. 354–359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Saijou, T. Itoh, K. W. Kim, S. I. Iemura, T. Natsume, and A. Miyajima, “Nucleocytoplasmic shuttling of the zinc finger protein EZI is mediated by importin-7-dependent nuclear import and CRM1-independent export mechanisms,” Journal of Biological Chemistry, vol. 282, no. 44, pp. 32327–32337, 2007. View at Publisher · View at Google Scholar · View at Scopus