About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 989572, 15 pages
http://dx.doi.org/10.1155/2012/989572
Review Article

Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation

Department of Biotechnology, School of Engineering of Lorena, University of São Paulo, 12-602-810 Lorena, SP, Brazil

Received 10 October 2012; Accepted 19 October 2012

Academic Editor: José Manuel Domínguez González

Copyright © 2012 Larissa Canilha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. R. Soccol, L. P. D. S. Vandenberghe, A. B. P. Medeiros et al., “Bioethanol from lignocelluloses: status and perspectives in Brazil,” Bioresource Technology, vol. 101, no. 13, pp. 4820–4825, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. B. S. Dien, M. A. Cotta, and T. W. Jeffries, “Bacteria engineered for fuel ethanol production: current status,” Applied Microbiology and Biotechnology, vol. 63, no. 3, pp. 258–266, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. “Conab (Companhia Nacional de Abastecimento-National Supply Company), 2012. Acompanhamento da Safra Brasileira de Cana-de-açúcar. Primeiro Levantamento da Safra 2012/2013,” http://www.conab.gov.br/.
  4. “Conab (Companhia Nacional de Abastecimento-National Supply Company), 2012. Acompanhamento da Safra Brasileira de Grãos. Décimo Segundo Levantamento da Safra 2011/2012,” http://www.conab.gov.br/.
  5. “Embrapa (Empresa Brasileira de Pesquisa Agropecuária—Brazilian Agricultural Research Corporation), 2010. Produção Brasileira de Mandioca em 2010,” http://www.embrapa.br/.
  6. R. C. L. B. Rodrigues, M. D. G. A. Felipe, J. B. Almeida E Silva, and M. Vitolo, “Response surface methodology for xylitol production from sugarcane bagasse hemicellulosic hydrolyzate using controlled vacuum evaporation process variables,” Process Biochemistry, vol. 38, no. 8, pp. 1231–1237, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. “Cenbio (Centro Nacional em Referência de Biomassa—Brazilian Reference Center on Biomass),” 2003, http://cenbio.iee.usp.br/.
  8. R. C. D. Cerqueira Leite, M. R. L. V. Leal, L. A. B. Cortez, W. M. Griffin, and M. I. Gaya Scandiffio, “Can Brazil replace 5% of the 2025 gasoline world demand with ethanol?” Energy, vol. 34, no. 5, pp. 655–661, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. L. A. D. Paes and M. A. Oliveira, “Potential trash biomass of the sugar cane plant,” in Biomass Power Generation. Sugarcane Bagasse and Trash, S. J. Hassuani, M. L. R. V. Leal, and I. C. Macedo, Eds., p. 19, PNUD and CTC, Piracicaba, Brazil, 1st edition, 2005.
  10. M. A. T. Neto, “Characterization of sugarcane trash and bagasse,” in Biomass Power Generation. Sugarcane Bagasse and Trash, S. J. Hassuani, M. L. R. V. Leal, and I. C. Macedo, Eds., p. 24, PNUD and CTC, Piracicaba, Brazil, 1st edition, 2005.
  11. O. Triana, M. Leonard, F. Saavedra, I. C. Acan, O. L. Garcia, and A. Abril, Atlas of Sugarcane Bagasse, Geplacea and ICIDCA, México, 1990.
  12. A. V. Ensinas, M. Modesto, S. A. Nebra, and L. Serra, “Reduction of irreversibility generation in sugar and ethanol production from sugarcane,” Energy, vol. 34, no. 5, pp. 680–688, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. J. R. Mutton, “Reflex of raw material quality in fermentative process,” in Proceedings of the 14th Workshop—Ethanol Production: Raw Material Quality, Engineering School of Lorena, University of São Paulo, São Paulo, Brazil, 2008.
  14. N. Mosier, C. Wyman, B. Dale et al., “Features of promising technologies for pretreatment of lignocellulosic biomass,” Bioresource Technology, vol. 96, no. 6, pp. 673–686, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. G. J. M. Rocha, C. Martin, I. B. Soares, A. M. Souto Maior, H. M. Baudel, and C. A. M. de Abreu, “Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production,” Biomass and Bioenergy, vol. 35, no. 1, pp. 663–670, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Fengel and G. Wegener, Wood Chemistry, Ultrastructure, Reactions, Walter de Gruyter, Berlin, Germany, 1989.
  17. A. Singh and P. Mishra, “Microbial pentose utilization,” in Current Applications in Biotechnology, vol. 33 of Progress in Industrial Microbiology, 1995.
  18. H. Boussarsar, B. Rogé, and M. Mathlouthi, “Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose,” Bioresource Technology, vol. 100, no. 24, pp. 6537–6542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Canilha, V. T. O. Santos, G. J. M. Rocha et al., “A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid,” Journal of Industrial Microbiology and Biotechnology, vol. 38, pp. 1467–1475, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. R. C. Kuhad, A. Singh, and K. E. Eriksson, “Microorganisms and enzymes involved in the degradation of plant fiber cell walls,” Advances in Biochemical Engineering and Biotechnology, vol. 57, pp. 45–125, 1997. View at Scopus
  21. M. J. Taherzsadeh and K. Karimi, “Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review,” Bioresources, vol. 2, pp. 707–738, 2007.
  22. A. R. Gonçalves and M. A. Soto-Oviedo, “Production of chelating agents through the enzymatic oxidation of Acetosolv sugarcane bagasse lignin,” Applied Biochemistry and Biotechnology A, vol. 98–100, pp. 365–371, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Stewart, “Lignin as a base material for materials applications: chemistry, application and economics,” Industrial Crops and Products, vol. 27, no. 2, pp. 202–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Fierro, V. Torné-Fernández, D. Montané, and A. Celzard, “Adsorption of phenol onto activated carbons having different textural and surface properties,” Microporous and Mesoporous Materials, vol. 111, no. 1–3, pp. 276–284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. H. L. Chum, S. K. Parker, D. A. Feinberg et al., The Economic Contribution of Lignin to Ethanol Production from Biomass, Solar Energy Research Institute, Golden, Colo, USA, 1985.
  26. P. Benar, Polpação acetosolv de bagaço de cana e madeira de eucalipto (Acetosolv pulping of bagasse and Eucaliptus wood) [M.S. thesis], Chemical Institute, Campinas University, São Paulo, Brazil, 1992.
  27. A. P. Pitarelo, Avaliação da susceptibilidade do bagaço e da palha de cana-de-açúcar à bioconversão via pré-tratamento a vapor e hidrólise enzimática (Evaluation of susceptibility of sugarcane bagasse and straw on the bioconversion by steam-explosion and enzymatic hydrolysis) [M.S. thesis], Federal Univesity of Paraná, Paraná, Brazil, 2007.
  28. A. S. da Silva, H. Inoue, T. Endo, S. Yano, and E. P. S. Bon, “Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation,” Bioresource Technology, vol. 101, no. 19, pp. 7402–7409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Brienzo, A. F. Siqueira, and A. M. F. Milagres, “Search for optimum conditions of sugarcane bagasse hemicellulose extraction,” Biochemical Engineering Journal, vol. 46, no. 2, pp. 199–204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. C. Rabelo, H. Carrere, R. Maciel Filho, and A. C. Costa, “Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept,” Bioresource Technology, vol. 102, no. 17, pp. 7887–7895, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Pandey, C. R. Soccol, P. Nigam, and V. T. Soccol, “Biotechnological potential of agro-industrial residues. I: sugarcane bagasse,” Bioresource Technology, vol. 74, no. 1, pp. 69–80, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Hatfield and R. S. Fukushima, “Can lignin be accurately measured?” Crop Science, vol. 45, no. 3, pp. 832–839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. L. A. D. Paes and S. J. Hassuani, “Potential trash and biomass of the sugarcane plantation, including trash recovery factors,” in Biomass Power Generation. Sugarcane Bagasse and Trash, S. J. Hassuani, M. L. R. V. Leal, and I. C. Macedo, Eds., p. 19, PNUD and CTC, Piracicaba, Brazil, 1st edition, 2005.
  34. R. Y. Moriya, Uso de xilanases e lacases de microrganismos no branqueamento de polpas organosolv de palha de cana-de-açúcar e estudo dos derivados celulósicos obtidos (Use of microbial xylanases and laccases in the bleaching of organosolv pulps from sugarcane straw and study of the cellulosic derivatives obtained) [Ph.D. thesis], University of São Paulo, Engineering School of Lorena, São Paulo, Brazil, 2007.
  35. M. B. W. Saad, L. R. M. Oliveira, R. G. Cândido, G. Quintana, G. J. M. Rocha, and A. R. Gonçalves, “Preliminary studies on fungal treatment of sugarcane straw for organosolv pulping,” Enzyme and Microbial Technology, vol. 43, no. 2, pp. 220–225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. Luz, A. R. Gonçalves, A. P. Del'Arco Jr., A. L. Leão, P. M. C. Ferrão, and G. J. M. Rocha, “Thermal properties of polypropylene composites reinforced with different vegetable fibers,” Advanced Materials Research, vol. 123–125, pp. 1199–1202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. S. M. Costa, P. G. Mazzola, J. C. A. R. Silva, R. Pahl, A. Pessoa Jr., and S. A. Costa, “Use of sugar cane straw as a source of cellulose for textile fiber production,” Industrial Crops and Products, vol. 42, pp. 189–194, 2013.
  38. M. T. Holtzapple and A. E. Humphrey, “The effect of organosolv pretreatment on the enzymatic hydrolysis of poplar,” Biotechnology and Bioengineering, vol. 26, no. 7, pp. 670–676, 1984. View at Scopus
  39. A. Margeot, B. Hahn-Hagerdal, M. Edlund, R. Slade, and F. Monot, “New improvements for lignocellulosic ethanol,” Current Opinion in Biotechnology, vol. 20, no. 3, pp. 372–380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. K. Chandel, G. Calvet, E. C. Giese, J. Reis, and S. S. Silva, “Statistical optimization of dual acid-base pretreatment of sugarcane bagasse improves the enzymatic hydrolysis into fermentable sugars,” in Proceedings of the Workshop on Second Generation of Bioethanol: Enzymatic Hydrolysis, Campinas, Brazil, November 2011.
  41. G. Y. S. Mtui, “Recent advances in pretreatment of lignocellulosic wastes and production of value added products,” African Journal of Biotechnology, vol. 8, no. 8, pp. 1398–1415, 2009. View at Scopus
  42. A. K. Chandel, E. C. Chan, R. Rudravaram, M. L. Narasu, L. V. Rao, and P. Ravinda, “Economics and environmental impact of bioethanol production technologies: an appraisal,” Biotechnology and Molecular Biology Reviews, vol. 2, pp. 14–32, 2007.
  43. P. Kumar, D. M. Barrett, M. J. Delwiche, and P. Stroeve, “Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production,” Industrial and Engineering Chemistry Research, vol. 48, no. 8, pp. 3713–3729, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Sun and J. Cheng, “Hydrolysis of lignocellulosic materials for ethanol production: a review,” Bioresource Technology, vol. 83, no. 1, pp. 1–11, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Inoue, S. Yano, T. Endo, T. Sakaki, and S. Sawayama, “Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus,” Biotechnology for Biofuels, vol. 1, article 2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Hideno, H. Inoue, K. Tsukahara et al., “Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw,” Bioresource Technology, vol. 100, no. 10, pp. 2706–2711, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Sarkar, S. K. Ghosh, S. Bannerjee, and K. Aikat, “Bioethanol production from agricultural wastes: an overview,” Renewable Energy, vol. 37, no. 1, pp. 19–27, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Açikalin, F. Karaca, and E. Bolat, “Pyrolysis of pistachio shell: effects of pyrolysis conditions and analysis of products,” Fuel, vol. 95, pp. 169–177, 2012.
  49. F. A. Agblevor, S. Besler, and A. E. Wiselogel, “Fast pyrolysis of stored biomass feedstocks,” Energy & Fuels, vol. 9, no. 4, pp. 635–640, 1995. View at Scopus
  50. P. Binod, K. Satyanagalakshmi, R. Sindhu, K. U. Janu, R. K. Sukumaran, and A. Pandey, “Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse,” Renewable Energy, vol. 37, no. 1, pp. 109–116, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. I. Balcu, C. A. Macarie, A. E. Segneanu, and R. Oana, “Combined microwave-acid pretreatment of the biomass,” in Progress in Biomass and Bioenergy Production, S. S. Shaukai, Ed., pp. 223–238, In Tech, Rijeka, Croatia, 2011.
  52. D. R. Keshwani, Microwave pretreatment of switchgrass for bioethanol production [Ph.D. thesis], Philosophy Biological and Agricultural Engineering, Raleigh, NC, USA, 2009.
  53. J. Xiong, J. Ye, W. Z. Liang, and P. M. Fan, “Influence of microwave on the ultrastructure of cellulose,” Journal of South China University Technology, vol. 28, pp. 84–89, 2000.
  54. X. Lu, B. Xi, Y. Zhang, and I. Angelidaki, “Microwave pretreatment of rape straw for bioethanol production: focus on energy efficiency,” Bioresource Technology, vol. 102, no. 17, pp. 7937–7940, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Chornet and R. P. Overend, “Phenomenological kinetics and reaction engineering aspects of steam/aqueous treatments,” in Steam Explosion Techniques: Fundamentals and Industrial Applications, B. Focher, A. Marzetti, and V. Crescenzi, Eds., pp. 21–58, Goran and Breach Science Publishers, Philadelphia, Pa, USA, 1991.
  56. W. E. Kaar, C. V. Gutierrez, and C. M. Kinoshita, “Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol,” Biomass and Bioenergy, vol. 14, no. 3, pp. 277–287, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. V. B. Agbor, N. Cicek, R. Sparling, A. Berlin, and D. B. Levin, “Biomass pretreatment: fundamentals toward application,” Biotechnology Advances, vol. 29, pp. 675–685, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Bals, C. Wedding, V. Balan, E. Sendich, and B. Dale, “Evaluating the impact of ammonia fiber expansion (AFEX) pretreatment conditions on the cost of ethanol production,” Bioresource Technology, vol. 102, no. 2, pp. 1277–1283, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. C. N. Hamelinck, G. van Hooijdonk, and A. P. C. Faaij, “Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term,” Biomass and Bioenergy, vol. 28, no. 4, pp. 384–410, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. W. S. Cardoso, F. A. Santos, A. M. Mota, F. D. Tardin, S. T. Resende, and J. H. Queiroz, “Pré-Tratamentos de Biomassa para Produção de Etanol de Segunda Geração,” Revista Analytica, vol. 56, pp. 64–76, 2012.
  61. M. J. Taherzadeh and K. Karimi, “Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review,” International Journal of Molecular Sciences, vol. 9, no. 9, pp. 1621–1651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. N. S. Mosier, R. Hendrickson, R. Dreschel, et al., “Principles and economics of pretreating cellulose in water for ethanol production,” in Proceedings of the 225th American Chemical Society Meeting, vol. 103, BIOT Division, New Orleans, La, USA, 2003.
  63. P. Alvira, E. Tomás-Pejó, M. Ballesteros, and M. J. Negro, “Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review,” Bioresource Technology, vol. 101, no. 13, pp. 4851–4861, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Laopaiboon, A. Thani, V. Leelavatcharamas, and L. Laopaiboon, “Acid hydrolysis of sugarcane bagasse for lactic acid production,” Bioresource Technology, vol. 101, no. 3, pp. 1036–1043, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. W. Carvalho, M. A. Batista, L. Canilha, J. C. Santos, A. Converti, and S. S. Silva, “Sugarcane bagasse hydrolysis with phosphoric and sulfuric acids and hydrolysate detoxification for xylitol production,” Journal of Chemical Technology and Biotechnology, vol. 79, no. 11, pp. 1308–1312, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Rodríguez-Chong, J. A. Ramírez, G. Garrote, and M. Vázquez, “Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment,” Journal of Food Engineering, vol. 61, no. 2, pp. 143–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. A. K. Chandel, S. S. Silva, and O. V. Singh, “Detoxification of lignocellulosic hydrolysates for improved bioethanol production,” in Biofuel Production-Recent Developments and Prospects, M. A. S. Bernardes, Ed., pp. 225–246, In Tech, Rijeka, Croatia, 2011.
  68. F. M. Gírio, C. Fonseca, F. Carvalheiro, L. C. Duarte, S. Marques, and R. Bogel-Łukasik, “Hemicelluloses for fuel ethanol: a review,” Bioresource Technology, vol. 101, no. 13, pp. 4775–4800, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Palmqvist and B. Hahn-Hägerdal, “Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition,” Bioresource Technology, vol. 74, no. 1, pp. 25–33, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. I. K. Kapdan, F. Kargi, and R. Oztekin, “Effects of operating parameters on acid hydrolysis of ground wheat starch: maximization of the sugar yield by statistical experiment design,” Starch-Stärke, vol. 63, no. 5, pp. 311–318, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. R. P. Overend and E. Chornet, “Fractionation of lignocellulosics by steam aqueous pretreatments,” Philosophical Transactions of the Royal Society, vol. 321, pp. 523–536, 1987.
  72. Y. Zheng, Z. Pan, and R. Zhang, “Overview of biomass pretreatment for cellulosic production,” International Journal of Agricultural and Biological Engineering, vol. 2, pp. 51–68, 2009.
  73. Y. Yamashita, M. Shono, C. Sasaki, and Y. Nakamura, “Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo,” Carbohydrate Polymers, vol. 79, no. 4, pp. 914–920, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Banerjee, S. Car, J. S. Scott-Craig, D. B. Hodge, and J. D. Walton, “Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose,” Biotechnology for Biofuels, vol. 4, article 16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. M. T. García-Cubero, G. González-Benito, I. Indacoechea, M. Coca, and S. Bolado, “Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw,” Bioresource Technology, vol. 100, no. 4, pp. 1608–1613, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. P. F. Vidal and J. Molinier, “Ozonolysis of lignin—improvement of in vitro digestibility of poplar sawdust,” Biomass, vol. 16, no. 1, pp. 1–17, 1988. View at Scopus
  77. R. El Hage, N. Brosse, L. Chrusciel, C. Sanchez, P. Sannigrahi, and A. Ragauskas, “Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus,” Polymer Degradation and Stability, vol. 94, pp. 1632–1638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. B. W. Koo, H. Y. Kim, N. Park, S. M. Lee, H. Yeo, and I. G. Choi, “Organosolv pretreatment of Liriodendron tulipifera and simultaneous saccharification and fermentation for bioethanol production,” Biomass and Bioenergy, vol. 35, no. 5, pp. 1833–1840, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. D. S. Ruzene, A. R. Gonçalves, J. A. Teixeira, and M. T. Pessoa De Amorim, “Carboxymethylcellulose obtained by ethanol/water organosolv process under acid conditions,” Applied Biochemistry and Biotechnology, vol. 137–140, no. 1–12, pp. 573–582, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. D. Pasquini, M. T. B. Pimenta, L. H. Ferreira, and A. A. D. S. Curvelo, “Extraction of lignin from sugar cane bagasse and Pinus taeda wood chips using ethanol-water mixtures and carbon dioxide at high pressures,” Journal of Supercritical Fluids, vol. 36, no. 1, pp. 31–39, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. F. Carvalheiro, L. C. Duarte, and F. M. Gírio, “Hemicellulose biorefineries: a review on biomass pretreatments,” Journal of Scientific and Industrial Research, vol. 67, no. 11, pp. 849–864, 2008. View at Scopus
  82. A. B. Bjerre, A. B. Olesen, and T. Fernqvist, “Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose,” Biotechnology and Bioengineering, vol. 49, pp. 568–577, 1996.
  83. W. Wang, T. Yuan, K. Wang, B. Cui, and Y. Dai, “Combination of biological pretreatment with liquid hot water pretreatment to enhance enzymatic hydrolysis of Populustomentosa,” Bioresource Technology, vol. 107, pp. 282–286, 2012.
  84. S. J. B. Duff and W. D. Murray, “Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review,” Bioresource Technology, vol. 55, no. 1, pp. 1–33, 1996. View at Publisher · View at Google Scholar · View at Scopus
  85. A. M. F. Milagres, W. Carvalho, and A. L. Ferraz, “Topochemistry, porosity and chemical composition affecting enzymatic hydrolysis of lignocellulosic materials,” in Routes to Cellulosic Ethanol, M. S. Buckeridge and G. H. Goldman, Eds., p. 53, Springer, Berlin, Germany, 2011.
  86. E. C. Giese, A. K. Chandel, I. S. Oliveira, and S. S. Silva, “Prospects for the bioethanol production from sugarcane feedstock: focus on Brazil,” in Sugarcane: Production, Cultivation and Uses, J. F. Gonçalves and K. D. Correa, Eds., Nova Science Publishers, New York, NY, USA, 2011.
  87. R. Anish and M. Rao, “Bioethanol from lignocellulosic biomass part III hydrolysis and fermentation,” in Handbook of Plant-Based Biofuels, A. Pandey, Ed., pp. 159–173, CRC Press, Portland, Ore, USA, 2009.
  88. S. I. Mussatto and I. C. Roberto, “Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review,” Bioresource Technology, vol. 93, no. 1, pp. 1–10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. D. L. Grzenia, D. J. Schell, and S. R. Wickramasighe, “Membrane extraction for detoxification of biomass hydrolysates,” Bioresource Technology, vol. 111, pp. 248–254, 2012.
  90. L. Canilha, W. Carvalho, M. Giulietti, M. D. G. A. Felipe, and J. B. A. E. Silva, “Clarification of a wheat straw-derived medium with ion-exchange resins for xylitol crystallization,” Journal of Chemical Technology and Biotechnology, vol. 83, no. 5, pp. 715–721, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. N. O. Nilvebrant, A. Reimann, S. Larsson, and L. J. Jönsson, “Detoxification of lignocellulose hydrolysates with ion-exchange resins,” Applied Biochemistry and Biotechnology A, vol. 91–93, pp. 35–49, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. E. Palmqvist and B. Hahn-Hägerdal, “Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification,” Bioresource Technology, vol. 74, no. 1, pp. 17–24, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. J. J. Zhu, Q. Yong, Y. Xu, and S. Y. Yu, “Comparative detoxification of vacuum evaporation/steam stripping combined with overliming on corn stover prehydrolyzate,” in Proceedings of the International Conference on Energy and Environment Technology (ICEET '09), vol. 3, pp. 240–243, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. W. Carvalho, L. Canilha, and S. S. Silva, “Semi-continuous xylose-to-xylitol bioconversion by Ca-alginate entrapped yeast cells in a stirred tank reactor,” Bioprocess and Biosystems Engineering, vol. 31, no. 5, pp. 493–498, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. F. A. F. Antunes, T. S. S. Milessi, I. Oliveira, A. K. Chandel, and S. S. Silva, “Characterization of sugarcane bagasse hemicellulosic hydrolysate after detoxification with overliming and activated charcoal,” in Proceedings of the 20th European Biomass Conference and Exhibition, Milan, Italy, 2012.
  96. A. Converti, J. M. Domínguez, P. Perego, S. S. Da Silva, and M. Zilli, “Wood hydrolysis and hydrolysate detoxification for subsequent xylitol production,” Chemical Engineering and Technology, vol. 23, no. 11, pp. 1013–1020, 2000. View at Scopus
  97. M. Cantarella, L. Cantarella, A. Gallifuoco, A. Spera, and F. Alfani, “Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF,” Process Biochemistry, vol. 39, no. 11, pp. 1533–1542, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. Z. Hou-Rui, Q. Xiang-Xiang, S. S. Silva et al., “Novel isolates for biological detoxification of lignocellulosic hydrolysate,” Applied Biochemistry and Biotechnology, vol. 152, no. 2, pp. 199–212, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. A. K. Chandel, G. Chandrasekhar, K. Radhika, R. Ravinder, and P. Ravindra, “Bioconversion of pentose sugars into ethanol: a review and future directions,” Biotechnology and Molecular Biology Reviews, vol. 6, pp. 8–20, 2011.
  100. B. Yang and C. E. Wyman, “Pretreatment: the key to unlocking low-cost cellulosic ethanol,” Biofuels, Bioproducts and Biorefining, vol. 2, no. 1, pp. 26–40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. A. D. Moreno, D. Ibarra, J. L. Férnandez, and M. Ballesteros, “Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT, 10875,” Bioresource Technology, vol. 106, pp. 101–109, 2012.
  102. W. Parawira and M. Tekere, “Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review,” Critical Reviews in Biotechnology, vol. 31, no. 1, pp. 20–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. B. G. Fonseca, R. D. O. Moutta, F. D. O. Ferraz et al., “Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 206097 yeast,” Journal of Industrial Microbiology and Biotechnology, vol. 38, no. 1, pp. 199–207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. Y. Lin and S. Tanaka, “Ethanol fermentation from biomass resources: current state and prospects,” Applied Microbiology and Biotechnology, vol. 69, no. 6, pp. 627–642, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. R. E. Hector, J. A. Mertens, M. J. Bowman, N. N. Nichols, M. A. Cotta, and S. R. Hughes, “Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation,” Yeast, vol. 28, pp. 645–660, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. L. K. Singh, G. Chaudhary, C. B. Majumder, and S. Ghosh, “Utilization of hemicellulosic fraction of lignocellulosic material for bioethanol production,” Advances in Applied Science Research, vol. 2, no. 5, pp. 508–521, 2011.
  107. J. Shen and C. E. Wyman, “A novel mechanism and kinetic model to explain enhanced xylose yields from dilute sulfuric acid compared to hydrothermal pretreatment of corn stover,” Bioresource Technology, vol. 102, pp. 9111–9120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Bettiga, B. Hahn-Hägerdal, and M. F. Gorwa-Grauslund, “Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains,” Biotechnology for Biofuels, vol. 1, article 16, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. C. P. Kurtzman and M. Suzuki, “Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces,” Mycoscience, vol. 51, no. 1, pp. 2–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. R. C. Kuhad, R. Gupta, Y. P. Khasa, A. Singh, and Y. H. P. Zhang, “Bioethanol production from pentose sugars: current status and future prospects,” Renewable and Sustainable Energy Reviews, vol. 15, pp. 4950–4962, 2011.
  111. M. R. L. V. Leal, “Ethanol production from cane resources,” in Bioenergy for Sustainable Development and International Competitiveness, F. X. Johnson and V. Seebaluck, Eds., pp. 126–157, Routledge, Abingdon, UK, 2012.
  112. H. J. Huang, S. Ramaswamy, U. W. Tschirner, and B. V. Ramarao, “A review of separation technologies in current and future biorefineries,” Separation and Purification Technology, vol. 62, no. 1, pp. 1–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. P. W. Madson, “Ethanol distillation: the fundamentals,” in The Alcohol Textbook, K. A. Jacques, T. P. Lyons, and D. R. Kelsall, Eds., pp. 319–336, Nottingham University Press, Nottingham, UK, 4th edition, 1995.