About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 107940, 13 pages
http://dx.doi.org/10.1155/2013/107940
Research Article

Immune Parameters in The Prognosis and Therapy Monitoring of Cutaneous Melanoma Patients: Experience, Role, and Limitations

1Immunobiology Laboratory, “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
2Department of Pathology, University of Medicine and Pharmacy Carol Davila, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania

Received 9 May 2013; Accepted 1 August 2013

Academic Editor: Tiziano Verri

Copyright © 2013 Monica Neagu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Chin, L. A. Garraway, and D. E. Fisher, “Malignant melanoma: genetics and therapeutics in the genomic era,” Genes and Development, vol. 20, no. 16, pp. 2149–2182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Neagu, C. Constantin, G. Manda, and I. Margaritescu, “Biomarkers of metastatic melanoma,” Biomarkers in Medicine, vol. 3, no. 1, pp. 71–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. American Cancer Society, Cancer Facts and Figures 2012, American Cancer Society, Atlanta, Ga, USA, 2012.
  4. M. R. Shurin, “Cancer as an immune-mediated disease,” ImmunoTargets and Therapy, vol. 1, pp. 1–6, 2012.
  5. M. Neagu, “Chapter 5-the immune system-a hidden treasure for biomarker discovery in cutaneous melanoma,” in Advances in Clinical Chemistry, G. S. Makowski, Ed., vol. 58, pp. 89–140, Academic Press, Burlington, Canada, 2012.
  6. NCCN, Clinical Practice Guidelines in Oncology: Melanoma, Version 3. 2012, National Comprehensive Cancer Network, Washington, Pa, USA, 2012.
  7. M. Costache, M. Neagu, A. Petrescu et al., “Statistical correlations between peripheral blood lymphocyte subpopulations and tumor inflammatory infiltrate in stage I of skin melanoma,” Romanian Journal of Morphology and Embryology, vol. 51, no. 4, pp. 693–699, 2010. View at Scopus
  8. S. Klein, C. C. Kretz, P. H. Krammer, and A. Kuhn, “CD127 low/and FoxP3 expression levels characterize different regulatory T-cell populations in human peripheral blood,” Journal of Investigative Dermatology, vol. 130, no. 2, pp. 492–499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Michel, L. Berthelot, S. Pettré et al., “Patients with relapsing-remitting multiple sclerosis have normal Treg function when cells expressing IL-7 receptor α-chain are excluded from the analysis,” Journal of Clinical Investigation, vol. 118, no. 10, pp. 3411–3419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. L. R. Shiow, D. B. Rosen, N. Brdičková et al., “CD69 acts downstream of interferon-α/β to inhibit S1P 1 and lymphocyte egress from lymphoid organs,” Nature, vol. 440, no. 7083, pp. 540–544, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Tomura, K. Itoh, and O. Kanagawa, “Naive CD4+ T lymphocytes circulate through lymphoid organs to interact with endogenous antigens and upregulate their function,” Journal of Immunology, vol. 184, no. 9, pp. 4646–4653, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Hernberg, P. S. Mattila, M. Rissanen et al., “The prognostic role of blood lymphocyte subset distribution in patients with resected high-risk primary or regionally metastatic melanoma,” Journal of Immunotherapy, vol. 30, no. 7, pp. 773–779, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Vence, A. K. Palucka, J. W. Fay et al., “Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20884–20889, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. D. McCarter, J. Baumgartner, G. A. Escobar et al., “Immunosuppressive dendritic and regulatory T cells are upregulated in melanoma patients,” Annals of Surgical Oncology, vol. 14, no. 10, pp. 2854–2860, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Cooper and S. A. Khader, “IL-12p40: an inherently agonistic cytokine,” Trends in Immunology, vol. 28, no. 1, pp. 33–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Sun, K. Jurgovsky, P. Möller et al., “Vaccination with IL-12 gene-modified autologous melanoma cells: preclinical results and a first clinical phase I study,” Gene Therapy, vol. 5, no. 4, pp. 481–490, 1998. View at Scopus
  17. D. Dewing, M. Emmett, and R. Pritchard Jones, “The roles of angiogenesis in malignant melanoma: trends in basic science research over the last 100 years,” ISRN Oncology, vol. 2012, Article ID 546927, 7 pages, 2012. View at Publisher · View at Google Scholar
  18. C. Scheibenbogen, T. Mohler, J. Haefele, W. Hunstein, and U. Keilholz, “Serum interleukin-8 (IL-8) is elevated in patients with metastatic melanoma and correlates with tumour load,” Melanoma Research, vol. 5, no. 3, pp. 179–181, 1995. View at Scopus
  19. S. Brennecke, M. Deichmann, H. Naeher, and H. Kurzen, “Decline in angiogenic factors, such as interleukin-8, indicates response to chemotherapy of metastatic melanoma,” Melanoma Research, vol. 15, no. 6, pp. 515–522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Okamoto, W. Liu, Y. Luo et al., “Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1β,” Journal of Biological Chemistry, vol. 285, no. 9, pp. 6477–6488, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. D. S. Tyler, G. M. Francis, M. Frederick et al., “Interleukin-1 production in tumor cells of human melanoma surgical specimens,” Journal of Interferon and Cytokine Research, vol. 15, no. 4, pp. 331–340, 1995. View at Scopus
  22. Y. Qin, S. Ekmekcioglu, P. Liu et al., “Constitutive aberrant endogenous interleukin-1 facilitates inflammation and growth in human melanoma,” Molecular Cancer Research, vol. 9, no. 11, pp. 1537–1550, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. S. Khalili, S. Liu, T. G. Rodríguez-Cruz, et al., “Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma,” Clinical Cancer Research, vol. 18, no. 19, pp. 5329–5340, 2012. View at Publisher · View at Google Scholar
  24. G. A. Porter, J. Abdalla, M. Lu et al., “Significance of plasma cytokine levels in melanoma patients with histologically negative sentinel lymph nodes,” Annals of Surgical Oncology, vol. 8, no. 2, pp. 116–122, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. L. T. Nguyen, P. H. Yen, J. Nie, et al., “Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs),” PLoS One, vol. 5, no. 11, Article ID e13940, 2010.
  26. M. R. Hussein, D. A. H. Elsers, S. A. Fadel, and A.-E. M. Omar, “Immunohistological characterisation of tumour infiltrating lymphocytes in melanocytic skin lesions,” Journal of Clinical Pathology, vol. 59, no. 3, pp. 316–324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Azimi, R. A. Scolyer, P. Rumcheva, et al., “Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma,” Journal of Clinical Oncology, vol. 30, no. 21, pp. 2678–2683, 2012. View at Publisher · View at Google Scholar
  28. M. C. Mihm Jr., C. G. Clemente, and N. Cascinelli, “Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response,” Laboratory Investigation, vol. 74, no. 1, pp. 43–47, 1996. View at Scopus
  29. C. G. Clemente, M. C. Mihm Jr., R. Bufalino, S. Zurrida, P. Collini, and N. Cascinelli, “Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma,” Cancer, vol. 77, no. 7, pp. 1303–1310, 1996.
  30. C. M. Balch, S.-J. Soong, J. E. Gershenwald et al., “Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system,” Journal of Clinical Oncology, vol. 19, no. 16, pp. 3622–3634, 2001. View at Scopus
  31. R. C. Taylor, A. Patel, K. S. Panageas, K. J. Busam, and M. S. Brady, “Tumor-infiltrating lymphocytes predict sentinel lymph node positivity in patients with cutaneous melanoma,” Journal of Clinical Oncology, vol. 25, no. 7, pp. 869–875, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. L. Burton, B. A. Roach, M. P. Mays et al., “Prognostic significance of tumor infiltrating lymphocytes in melanoma,” American Surgeon, vol. 77, no. 2, pp. 188–192, 2011. View at Scopus
  33. D. A. Oble, R. Loewe, P. Yu, and M. C. Mihm Jr., “Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma,” Cancer Immunity, vol. 9, p. 3, 2009. View at Scopus
  34. J. B. Haanen, A. Baars, R. Gomez et al., “Melanoma-specific tumor-infiltrating lymphocytes but not circulating melanoma-specific T cells may predict survival in resected advanced-stage melanoma patients,” Cancer Immunology, Immunotherapy, vol. 55, no. 4, pp. 451–458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. S. H. Chiou, B. C. Sheu, W. C. Chang, S. C. Huang, and H. Hong-Nerng, “Current concepts of tumor-infiltrating lymphocytes in human malignancies,” Journal of Reproductive Immunology, vol. 67, no. 1-2, pp. 35–50, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Pavoni, G. Monteriù, D. Santapaola et al., “Tumor-infiltrating B lymphocytes as an efficient source of highly specific immunoglobulins recognizing tumor cells,” BMC Biotechnology, vol. 7, p. 70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. G. M. Woods, R. C. Malley, and H. K. Muller, “The skin immune system and the challenge of tumour immunosurveillance,” European Journal of Dermatology, vol. 15, no. 2, pp. 63–69, 2005. View at Scopus
  38. S. Zurac, G. Negroiu, S. Petrescu, et al., “Matrix metalloproteinases underexpression in melanoma with regression,” Virchows Archiv, vol. 461, supplement 1, p. S40, 2012.
  39. M. Guida, A. Riccobon, G. Biasco et al., “Basal level and behaviour of cytokines in a randomized outpatient trial comparing chemotherapy and biochemotherapy in metastatic melanoma,” Melanoma Research, vol. 16, no. 4, pp. 317–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. V. von Felbert, F. Córdoba, J. Weissenberger et al., “Interleukin-6 gene ablation in a transgenic mouse model of malignant skin melanoma,” American Journal of Pathology, vol. 166, no. 3, pp. 831–841, 2005. View at Scopus
  41. L. Hoejberg, L. Bastholt, and H. Schmidt, “Interleukin-6 and melanoma,” Melanoma Research, vol. 22, no. 5, pp. 327–333, 2012. View at Publisher · View at Google Scholar
  42. M. Hernberg, P. S. Mattila, M. Rissanen et al., “The prognostic role of blood lymphocyte subset distribution in patients with resected high-risk primary or regionally metastatic melanoma,” Journal of Immunotherapy, vol. 30, no. 7, pp. 773–779, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Wang, H. D. Edington, U. N. M. Rao et al., “Effects of high-dose IFNα.2b on regional lymph node metastases of human melanoma: modulation of STAT5, FOXP3, and IL-17,” Clinical Cancer Research, vol. 14, no. 24, pp. 8314–8320, 2008. View at Publisher · View at Google Scholar · View at Scopus