About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 107954, 10 pages
http://dx.doi.org/10.1155/2013/107954
Review Article

Prostate Stem Cells in the Development of Benign Prostate Hyperplasia and Prostate Cancer: Emerging Role and Concepts

1Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390005, India
2Ex-assistant Professor karamsad medical college and Gupta Pathological laboratory, Vadodara, Gujarat 390001, India

Received 23 April 2013; Revised 14 June 2013; Accepted 14 June 2013

Academic Editor: Mauro S. G. Pavao

Copyright © 2013 Akhilesh Prajapati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. L. Gaynor, “Isoflavones and the prevention and treatment of prostate disease: is there a role?” Cleveland Clinic Journal of Medicine, vol. 70, no. 3, pp. 203–204, 2003.
  2. L. Denis, M. S. Morton, and K. Griffiths, “Diet and its preventive role in prostatic disease,” European Urology, vol. 35, no. 5-6, pp. 377–387, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. M. Shen and C. Abate-Shen, “Molecular genetics of prostate cancer: new prospects for old challenges,” Genes and Development, vol. 24, no. 18, pp. 1967–2000, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. W. W. Barclay, R. D. Woodruff, M. C. Hall, and S. D. Cramer, “A system for studying epithelial-stromal interactions reveals distinct inductive abilities of stromal cells from benign prostatic hyperplasia and prostate cancer,” Endocrinology, vol. 146, no. 1, pp. 13–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. M. Harman, E. J. Metter, J. D. Tobin, J. Pearson, and M. R. Blackman, “Longitudinal effects of aging on serum total and free testosterone levels in healthy men,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 2, pp. 724–731, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. C. Nickel, J. Downey, I. Young, and S. Boag, “Asymptomatic inflammation and/or infection in benign prostatic hyperplasia,” BJU International, vol. 84, no. 9, pp. 976–981, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. J. D. McConnell, “The pathophysiology of benign prostatic hyperplasia,” Journal of Andrology, vol. 12, no. 6, pp. 356–363, 1991. View at Scopus
  9. M. Mimeault and S. K. Batra, “Recent advances on multiple tumorigenic cascades involved in prostatic cancer progression and targeting therapies,” Carcinogenesis, vol. 27, no. 1, pp. 1–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Marcelli and G. R. Cunningham, “Hormonal signaling in prostatic hyperplasia and neoplasia,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 10, pp. 3463–3468, 1999. View at Scopus
  11. A. Y. Nikitin, A. Matoso, and P. Roy-Burman, “Prostate stem cells and cancer,” Histology and histopathology, vol. 22, no. 9, pp. 1043–1049, 2007. View at Scopus
  12. M. Notara and A. Ahmed, “Benign prostate hyperplasia and stem cells: a new therapeutic opportunity,” Cell Biology and Toxicology, vol. 28, no. 6, pp. 435–442, 2012.
  13. G. L. Powers and P. C. Marker, “Recent advances in prostate development and links to prostatic diseases,” Wiley Interdisciplinary Reviews, vol. 5, no. 2, pp. 243–256, 2013.
  14. G. S. Prins and O. Putz, “Molecular signaling pathways that regulate prostate gland development,” Differentiation, vol. 76, no. 6, pp. 641–659, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Sugimura, G. R. Cunha, and A. A. Donjacour, “Morphogenesis of ductal networks in the mouse prostate,” Biology of Reproduction, vol. 34, no. 5, pp. 961–971, 1986. View at Scopus
  16. J. E. McNeal, “Anatomy of the prostate and morphogenesis of BPH,” Progress in Clinical and Biological Research, vol. 145, pp. 27–53, 1984. View at Scopus
  17. J. E. McNeal and D. G. Bostwick, “Anatomy of the prostatic urethra,” Journal of the American Medical Association, vol. 251, no. 7, pp. 890–891, 1984. View at Publisher · View at Google Scholar · View at Scopus
  18. B. G. Timms, “Prostate development: a historical perspective,” Differentiation, vol. 76, no. 6, pp. 565–577, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Abate-Shen and M. M. Shen, “Molecular genetics of prostate cancer,” Genes and Development, vol. 14, no. 19, pp. 2410–2434, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Bartsch and H. P. Rohr, “Comparative light and electron microscopic study of the human, dog and rat prostate: an approach to an experimental model for human benign prostatic hyperplasia (light and electron microscopic analysis): a review,” Urologia Internationalis, vol. 35, no. 2, pp. 91–104, 1980. View at Scopus
  21. H. Bonkhoff and K. Remberger, “Widespread distribution of nuclear androgen receptors in the basal cell layer of the normal and hyperplastic human prostate,” Virchows Archiv, vol. 422, no. 1, pp. 35–38, 1993. View at Scopus
  22. Y. Wang, S. W. Hayward, M. Cao, K. A. Thayer, and G. R. Cunha, “Cell differentiation lineage in the prostate,” Differentiation, vol. 68, no. 4-5, pp. 270–279, 2001. View at Scopus
  23. R. M. Long, C. Morrissey, J. M. Fitzpatrick, and R. W. G. Watson, “Prostate epithelial cell differentiation and its relevance to the understanding of prostate cancer therapies,” Clinical Science, vol. 108, no. 1, pp. 1–11, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. De Marzo, A. K. Meeker, J. I. Epstein, and D. S. Coffey, “Prostate stem cell compartments: expression of the cell cycle inhibitor p27(Kip1) in normal, hyperplastic, and neoplastic cells,” The American Journal of Pathology, vol. 153, no. 3, pp. 911–919, 1998. View at Scopus
  25. H. Bonkhoff, U. Stein, and K. Remberger, “Endocrine-paracrine cell types in the prostate and prostatic adenocarcinoma are postmitotic cells,” Human Pathology, vol. 26, no. 2, pp. 167–170, 1995. View at Scopus
  26. J. A. Schalken and G. van Leenders, “Cellular and molecular biology of the prostate: stem cell biology,” Urology, vol. 62, supplement 1, no. 5, pp. 11–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. G. P. Amorino and S. J. Parsons, “Neuroendocrine cells in prostate cancer,” Critical Reviews in Eukaryotic Gene Expression, vol. 14, no. 4, pp. 287–300, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. P. A. Abrahamsson, “Neuroendocrine differentiation in prostatic carcinoma,” Prostate, vol. 39, no. 2, pp. 135–148, 1999.
  29. H. Bonkhoff, U. Stein, and K. Remberger, “Multidirectional differentiation in the normal, hyperplastic, and neoplastic human prostate: simultaneous demonstration of cell-specific epithelial markers,” Human Pathology, vol. 25, no. 1, pp. 42–46, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Bonkhoff and K. Remberger, “Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model,” Prostate, vol. 28, no. 2, pp. 98–106, 1996.
  31. Y. Xue, F. Smedts, F. M. Debruyne, J. J. de la Rosette, and J. A. Schalken, “Identification of intermediate cell types by keratin expression in the developing human prostate,” Prostate, vol. 34, no. 4, pp. 292–301, 1998.
  32. D. L. Hudson, M. O'Hare, F. M. Watt, and J. R. W. Masters, “Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells,” Laboratory Investigation, vol. 80, no. 8, pp. 1243–1250, 2000. View at Scopus
  33. T. Takao and A. Tsujimura, “Prostate stem cells: the niche and cell markers,” International Journal of Urology, vol. 15, no. 4, pp. 289–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. T. Isaacs and D. S. Coffey, “Etiology and disease process of benign prostatic hyperplasia,” Prostate, vol. 2, pp. 33–50, 1989. View at Scopus
  35. H. F. English, R. J. Santen, and J. T. Isaacs, “Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement,” Prostate, vol. 11, no. 3, pp. 229–242, 1987. View at Scopus
  36. G. S. Evans and J. A. Chandler, “Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation,” Prostate, vol. 11, no. 4, pp. 339–351, 1987. View at Scopus
  37. A. P. M. Verhagen, T. W. Aalders, F. C. S. Ramaekers, F. M. J. Debruyne, and J. A. Schalken, “Differential expression of keratins in the basal and luminal compartments of rat prostatic epithelium during degeneration and regeneration,” Prostate, vol. 13, no. 1, pp. 25–38, 1988. View at Scopus
  38. D. P. DeKlerk and D. S. Coffey, “Quantitative determination of prostatic epithelial and stromal hyperplasia by a new technique. Biomorphometrics,” Investigative Urology, vol. 16, no. 3, pp. 240–245, 1978. View at Scopus
  39. N. Kyprianou and J. T. Isaacs, “Identification of a cellular receptor for transforming growth factor-β in rat ventral prostate and its negative regulation by androgens,” Endocrinology, vol. 123, no. 4, pp. 2124–2131, 1988. View at Scopus
  40. M. Montpetit, P. Abrahams, A. F. Clark, and M. Tenniswood, “Androgen-independent epithelial cells of the rat ventral prostate,” Prostate, vol. 12, no. 1, pp. 13–28, 1988. View at Scopus
  41. L. Xin, H. Ide, Y. Kim, P. Dubey, and O. N. Witte, “In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, supplement 1, pp. 11896–11903, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Azuma, A. Hirao, K. Takubo, I. Hamaguchi, T. Kitamura, and T. Suda, “A quantitative matrigel assay for assessing repopulating capacity of prostate stem cells,” Biochemical and Biophysical Research Communications, vol. 338, no. 2, pp. 1164–1170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Tsujimura, Y. Koikawa, S. Salm et al., “Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis,” Journal of Cell Biology, vol. 157, no. 7, pp. 1257–1265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Goto, S. N. Salm, S. Coetzee et al., “Proximal prostatic stem cells are programmed to regenerate a proximal-distal ductal axis,” Stem Cells, vol. 24, no. 8, pp. 1859–1868, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. J. A. Nemeth and C. Lee, “Prostatic ductal system in rats: regional variation in stromal organization,” Prostate, vol. 28, no. 2, pp. 124–128, 1996.
  46. J. A. Nemeth, J. A. Sensibar, R. R. White, D. J. Zelner, I. Y. Kim, and C. Lee, “Prostatic ductal system in rats: tissue-specific expression and regional variation in stromal distribution of transforming growth factor-beta 1,” Prostate, vol. 33, no. 1, pp. 64–71, 1997.
  47. S. N. Salm, P. E. Burger, S. Coetzee, K. Goto, D. Moscatelli, and E. L. Wilson, “TGF-β maintains dormancy of prostatic stem cells in the proximal region of ducts,” Journal of Cell Biology, vol. 170, no. 1, pp. 81–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. P. E. Burger, X. Xiong, S. Coetzee et al., “Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 20, pp. 7180–7185, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. D. A. Lawson, L. Xin, R. U. Lukacs, D. Cheng, and O. N. Witte, “Isolation and functional characterization of murine prostate stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 1, pp. 181–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. K. G. Leong, B.-E. Wang, L. Johnson, and W.-Q. Gao, “Generation of a prostate from a single adult stem cell,” Nature, vol. 456, no. 7223, pp. 804–810, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. A. T. Collins, F. K. Habib, N. J. Maitland, and D. E. Neal, “Identification and isolation of human prostate epithelial stem cells based on α2β1-integrin expression,” Journal of Cell Science, vol. 114, no. 21, pp. 3865–3872, 2001. View at Scopus
  52. G. D. Richardson, C. N. Robson, S. H. Lang, D. E. Neal, N. J. Maitland, and A. T. Collins, “CD133, a novel marker for human prostatic epithelial stem cells,” Journal of Cell Science, vol. 117, no. 16, pp. 3539–3545, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Schmelz, R. Moll, U. Hesse et al., “Identification of a stem cell candidate in the normal human prostate gland,” European Journal of Cell Biology, vol. 84, no. 2-3, pp. 341–354, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Missol-Kolka, J. Karbanová, P. Janich et al., “Prominin-1 (CD133) is not restricted to stem cells located in the basal compartment of murine and human prostate,” Prostate, vol. 71, no. 3, pp. 254–267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. R. I. Bhatt, M. D. Brown, C. A. Hart et al., “Novel method for the isolation and characterisation of the putative prostatic stem cell,” Cytometry A, vol. 54, no. 2, pp. 89–99, 2003. View at Scopus
  56. P. E. Burger, R. Gupta, X. Xiong et al., “High aldehyde dehydrogenase activity: a novel functional marker of murine prostate stem/progenitor cells,” Stem Cells, vol. 27, no. 9, pp. 2220–2228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. A. S. Goldstein, D. A. Lawson, D. Cheng, W. Sun, I. P. Garraway, and O. N. Witte, “Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 52, pp. 20882–20887, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Y. Liu, L. D. True, L. Latray et al., “Cell-cell interaction in prostate gene regulation and cytodifferentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 20, pp. 10705–10710, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. J. C. Pignon, C. Grisanzio, Y. Geng, J. Song, R. A. Shivdasani, and S. Signoretti, “p63-expressing cells are the stem cells of developing prostate, bladder, and colorectal epithelia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 20, pp. 8105–8110, 2013.
  60. M. Yao, R. A. Taylor, M. G. Richards et al., “Prostate-regenerating capacity of cultured human adult prostate epithelial cells,” Cells Tissues Organs, vol. 191, no. 3, pp. 203–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. I. P. Garraway, W. Sun, C. P. Tran et al., “Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo,” Prostate, vol. 70, no. 5, pp. 491–501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. G. van Leenders, H. Dijkman, C. Hulsbergen-van de Kaa, D. Ruiter, and J. Schalken, “Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy,” Laboratory Investigation, vol. 80, no. 8, pp. 1251–1258, 2000. View at Scopus
  63. W. W. Barclay, L. S. Axanova, W. Chen et al., “Characterization of adult prostatic progenitor/stem cells exhibiting self-renewal and multilineage differentiation,” Stem Cells, vol. 26, no. 3, pp. 600–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. R. A. Taylor, R. Toivanen, and G. P. Risbridger, “Stem cells in prostate cancer: treating the root of the problem,” Endocrine-Related Cancer, vol. 17, no. 4, pp. R273–R285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. C. G. Roehrborn, J. D. McConnell, M. Lieber et al., “Serum prostate-specific antigen concentration is a powerful predictor of acute urinary retention and need for surgery in men with clinical benign prostatic hyperplasia,” Urology, vol. 53, no. 3, pp. 473–480, 1999. View at Publisher · View at Google Scholar · View at Scopus
  66. M. J. Naslund and M. Miner, “A review of the clinical efficacy and safety of 5α-reductase inhibitors for the enlarged prostate,” Clinical Therapeutics, vol. 29, no. 1, pp. 17–25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. P. Boyle, C. Roehrborn, R. Harkaway, J. Logie, J. de La Rosette, and M. Emberton, “5-alpha reductase inhibition provides superior benefits to alpha blockade by preventing AUR and BPH-related surgery,” European Urology, vol. 45, no. 5, pp. 620–627, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. V. K. Lin, S.-Y. Wang, D. V. Vazquez, C. C. Xu, S. Zhang, and L. Tang, “Prostatic stromal cells derived from benign prostatic hyperplasia specimens possess stem cell like property,” Prostate, vol. 67, no. 12, pp. 1265–1276, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. G. R. Cunha, S. W. Hayward, R. Dahiya, and B. A. Foster, “Smooth muscle-epithelial interactions in normal and neoplastic prostatic development,” Acta Anatomica, vol. 155, no. 1, pp. 63–72, 1996. View at Scopus
  70. C. Richard, G. Kim, Y. Koikawa et al., “Androgens modulate the balance between VEGF and angiopoietin expression in prostate epithelial and smooth muscle cells,” Prostate, vol. 50, no. 2, pp. 83–91, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. G. A. Schuster and T. G. Schuster, “The relative amount of epithelium, muscle, connective tissue and lumen in prostatic hyperplasia as a function of the mass of tissue resected,” Journal of Urology, vol. 161, no. 4, pp. 1168–1173, 1999. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Tang and J. Yang, “Etiopathogenesis of benign prostatic hypeprlasia,” Indian Journal of Urology, vol. 25, no. 3, pp. 312–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. S. J. Berry, D. S. Coffey, J. D. Strandberg, and L. L. Ewing, “Effect of age, castration, and testosterone replacement on the development and restoration of canine benign prostatic hyperplasia,” Prostate, vol. 9, no. 3, pp. 295–302, 1986. View at Scopus
  74. N. Kyprianou, H. Tu, and S. C. Jacobs, “Apoptotic versus proliferative activities in human benign prostatic hyperplasia,” Human Pathology, vol. 27, no. 7, pp. 668–675, 1996. View at Publisher · View at Google Scholar · View at Scopus
  75. E. Shapiro, M. J. Becich, V. Hartanto, and H. Lepor, “The relative proportion of stromal and epithelial hyperplasia is related to the development of symptomatic benign prostate hyperplasia,” Journal of Urology, vol. 147, no. 5, pp. 1293–1297, 1992. View at Scopus
  76. J. A. Ceder, L. Jansson, R. A. Ehrnström, L. Rönnstrand, and P.-A. Abrahamsson, “The characterization of epithelial and stromal subsets of candidate stem/progenitor cells in the human adult prostate,” European Urology, vol. 53, no. 3, pp. 524–532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Imura, Y. Kojima, Y. Kubota et al., “Regulation of cell proliferation through a KIT-mediated mechanism in benign prostatic hyperplasia,” Prostate, vol. 72, no. 14, pp. 1506–1513, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Lammie, M. Drobnjak, W. Gerald, A. Saad, R. Cote, and C. Cordon-Cardo, “Expression of c-kit and kit ligand proteins in normal human tissues,” Journal of Histochemistry and Cytochemistry, vol. 42, no. 11, pp. 1417–1425, 1994. View at Scopus
  79. A. Shafik, I. Shafik, and O. El-Sibai, “Identification of c-kit-positive cells in the human prostate: the interstitial cells of Cajal,” Archives of Andrology, vol. 51, no. 5, pp. 345–351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Kondi-Pafiti, N. Arkadopoulos, C. Gennatas, V. Michalaki, M. Frangou-Plegmenou, and P. Chatzipantelis, “Expression of c-kit in common benign and malignant breast lesions,” Tumori, vol. 96, no. 6, pp. 978–984, 2010. View at Scopus
  81. R. Simak, P. Capodieci, D. W. Cohen et al., “Expression of c-kit and kit-ligand in benign and malignant prostatic tissues,” Histology and Histopathology, vol. 15, no. 2, pp. 365–374, 2000. View at Scopus
  82. H. Yamamoto, J. R. Masters, P. Dasgupta et al., “CD49f is an efficient marker of monolayer- and spheroid colony-forming cells of the benign and malignant human prostate,” PLoS ONE, vol. 7, no. 10, Article ID e46979, 2012.
  83. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Le Magnen, L. Bubendorf, C. Ruiz et al., “Klf4 transcription factor is expressed in the cytoplasm of prostate cancer cells,” European Journal of Cancer, vol. 49, no. 4, pp. 955–963, 2013.
  85. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. N. J. Maitland and A. Collins, “A tumour stem cell hypothesis for the origins of prostate cancer,” BJU International, vol. 96, no. 9, pp. 1219–1223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. N. J. Maitland, F. M. Frame, E. S. Polson, J. L. Lewis, and A. T. Collins, “Prostate cancer stem cells: do they have a basal or luminal phenotype?” Hormones and Cancer, vol. 2, no. 1, pp. 47–61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. E. E. Oldridge, D. Pellacani, A. T. Collins, and N. J. Maitland, “Prostate cancer stem cells: are they androgen-responsive?” Molecular and Cellular Endocrinology, vol. 360, no. 1-2, pp. 14–24, 2011.
  89. D. F. Gleason, “Classification of prostatic carcinomas,” Cancer Chemotherapy Reports, vol. 50, no. 3, pp. 125–128, 1966. View at Scopus
  90. C. Grisanzio and S. Signoretti, “p63 in prostate biology and pathology,” Journal of Cellular Biochemistry, vol. 103, no. 5, pp. 1354–1368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. Z. A. Wang and M. M. Shen, “Revisiting the concept of cancer stem cells in prostate cancer,” Oncogene, vol. 30, no. 11, pp. 1261–1271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. H. Korsten, A. Ziel-van der Made, X. Ma, T. van der Kwast, and J. Trapman, “Accumulating progenitor cells in the luminal epithelial cell layer are candidate tumor initiating cells in a Pten knockout mouse prostate cancer model,” PLoS ONE, vol. 4, no. 5, Article ID e5662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. X. Ma, A. C. Ziel-van der Made, B. Autar et al., “Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis,” Cancer Research, vol. 65, no. 13, pp. 5730–5739, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. D. J. Mulholland, L. Xin, A. Morim, D. Lawson, O. Witte, and H. Wu, “Lin-Sca-1+CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model,” Cancer Research, vol. 69, no. 22, pp. 8555–8562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. A. S. Goldstein, J. Huang, C. Guo, I. P. Garraway, and O. N. Witte, “Identification of a cell of origin for human prostate cancer,” Science, vol. 329, no. 5991, pp. 568–571, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. A. T. Collins, P. A. Berry, C. Hyde, M. J. Stower, and N. J. Maitland, “Prospective identification of tumorigenic prostate cancer stem cells,” Cancer Research, vol. 65, no. 23, pp. 10946–10951, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. C. van den Hoogen, G. van der Horst, H. Cheung et al., “High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer,” Cancer Research, vol. 70, no. 12, pp. 5163–5173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. E. M. Hurt, B. T. Kawasaki, G. J. Klarmann, S. B. Thomas, and W. L. Farrar, “CD44+CD24- prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis,” British Journal of Cancer, vol. 98, no. 4, pp. 756–765, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. C. Wei, W. Guomin, L. Yujun, and Q. Ruizhe, “Cancer stem-like cells in human prostate carcinoma cells DU145: the seeds of the cell line?” Cancer Biology and Therapy, vol. 6, no. 5, pp. 763–768, 2007. View at Scopus
  100. L. Patrawala, T. Calhoun, R. Schneider-Broussard et al., “Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells,” Oncogene, vol. 25, no. 12, pp. 1696–1708, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. V. K. Rajasekhar, L. Studer, W. Gerald, N. D. Socci, and H. I. Scher, “Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-κB signalling,” Nature Communications, vol. 2, article 162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. A. D. Whetton and G. J. Graham, “Homing and mobilization in the stem cell niche,” Trends in Cell Biology, vol. 9, no. 6, pp. 233–238, 1999. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Spradling, D. Drummond-Barbosa, and T. Kai, “Stem cells find their niche,” Nature, vol. 414, no. 6859, pp. 98–104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  104. I. V. Litvinov, D. J. Vander Griend, Y. Xu, L. Antony, S. L. Dalrymple, and J. T. Isaacs, “Low-calcium serum-free defined medium selects for growth of normal prostatic epithelial stem cells,” Cancer Research, vol. 66, no. 17, pp. 8598–8607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. J. T. Isaacs, “Prostate stem cells and benign prostatic hyperplasia,” Prostate, vol. 68, no. 9, pp. 1025–1034, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. D. L. Hudson, “Epithelial stem cells in human prostate growth and disease,” Prostate Cancer and Prostatic Diseases, vol. 7, no. 3, pp. 188–194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. C. P. Tran, C. Lin, J. Yamashiro, and R. E. Reiter, “Prostate stem cell antigen is a marker of late intermediate prostate epithelial cells,” Molecular Cancer Research, vol. 1, no. 2, pp. 113–121, 2002. View at Scopus
  108. P. A. Humphrey, “Diagnosis of adenocarcinoma in prostate needle biopsy tissue,” Journal of Clinical Pathology, vol. 60, no. 1, pp. 35–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. C. J. Shepherd, S. Rizzo, I. Ledaki et al., “Expression profiling of CD133+ and CD133- epithelial cells from human prostate,” Prostate, vol. 68, no. 9, pp. 1007–1024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. A. T. Collins and N. J. Maitland, “Prostate cancer stem cells,” European Journal of Cancer, vol. 42, no. 9, pp. 1213–1218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. R. Blum, R. Gupta, P. E. Burger et al., “Molecular signatures of prostate stem cells reveal novel signaling pathways and provide insights into prostate cancer,” PLoS ONE, vol. 4, no. 5, Article ID e5722, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. B.-Y. Chen, J.-Y. Liu, H.-H. Chang et al., “Hedgehog is involved in prostate basal cell hyperplasia formation and its progressing towards tumorigenesis,” Biochemical and Biophysical Research Communications, vol. 357, no. 4, pp. 1084–1089, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. D. Nikoleishvili, A. Pertia, O. Trsintsadze, N. Gogokhia, L. Managadze, and A. Chkhotua, “Expression of p27(Kip1), cyclin D3 and Ki67 in BPH, prostate cancer and hormone-treated prostate cancer cells,” International Urology and Nephrology, vol. 40, no. 4, pp. 953–959, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. J. M. Rosen and C. T. Jordan, “The increasing complexity of the cancer stem cell paradigm,” Science, vol. 324, no. 5935, pp. 1670–1673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Y. Liu, P. S. Nelson, G. D. van Engh, and L. Hood, “Human prostate epithelial cell-type cDNA libraries and prostate expression patterns,” Prostate, vol. 50, no. 2, pp. 92–103, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. G. J. L. H. van Leenders and J. A. Schalken, “Stem cell differentiation within the human prostate epithelium: implications for prostate carcinogenesis,” BJU International, vol. 88, Supplement, no. 2, pp. 35–42, 2001. View at Scopus
  117. N. Craft, C. Chhor, C. Tran et al., “Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process,” Cancer Research, vol. 59, no. 19, pp. 5030–5036, 1999. View at Scopus
  118. A. Gu, J. Yuan, M. Wills, and S. Kasper, “Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo,” Cancer Research, vol. 67, no. 10, pp. 4807–4815, 2007. View at Publisher · View at Google Scholar · View at Scopus