About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 108794, 7 pages
http://dx.doi.org/10.1155/2013/108794
Research Article

An Attempted Substitute Study of Total Skin Electron Therapy Technique by Using Helical Photon Tomotherapy with Helical Irradiation of the Total Skin Treatment: A Phantom Result

1Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
2Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404, Taiwan
3Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
4Department of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
5Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan

Received 4 May 2013; Accepted 16 June 2013

Academic Editor: Tsair-Fwu Lee

Copyright © 2013 Chi-Ta Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Harrison, J. Young, D. Navi et al., “Revisiting low-dose total skin electron beam therapy in mycosis fungoides,” International Journal of Radiation Oncology Biology Physics, vol. 81, no. 4, pp. e651–e657, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Niroomand-Rad, M. T. Gillin, R. Komaki, R. W. Kline, and D. F. Grimm, “Dose distribution in total skin electron beam irradiation using the six-field technique,” International Journal of Radiation Oncology Biology Physics, vol. 12, no. 3, pp. 415–419, 1986. View at Scopus
  3. R. D. Weaver, B. J. Gerbi, and K. E. Dusenbery, “Evaluation of dose variation during total skin electron irradiation using thermoluminescent dosimeters,” International Journal of Radiation Oncology Biology Physics, vol. 33, no. 2, pp. 475–478, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. L. M. Gamble, T. J. Farrell, G. W. Jones, and J. E. Hayward, “Two-dimensional mapping of underdosed areas using radiochromic film for patients undergoing total skin electron beam radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 62, no. 3, pp. 920–924, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. T. R. Mackie, T. Holmes, S. Swerdloff et al., “Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy,” Medical Physics, vol. 20, no. 6, pp. 1709–1719, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. T. E. Schultheiss, J. Wong, A. Liu, G. Olivera, and G. Somlo, “Image-guided total marrow and total lymphatic irradiation using helical tomotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 67, no. 4, pp. 1259–1267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. P.-W. Shueng, S.-C. Lin, N.-S. Chong et al., “Total marrow irradiation with helical tomotherapy for bone marrow transplantation of multiple myeloma: first experience in Asia,” Technology in Cancer Research and Treatment, vol. 8, no. 1, pp. 29–38, 2009. View at Scopus
  8. N. Hardcastle, E. Soisson, P. Metcalfe, A. B. Rosenfeld, and W. A. Tomé, “Dosimetric verification of helical tomotherapy for total scalp irradiation,” Medical Physics, vol. 35, no. 11, pp. 5061–5068, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. T. Chiu-Tsao and M. F. Chan, “Photon beam dosimetry in the superficial buildup region using radiochromic EBT film stack,” Medical Physics, vol. 36, no. 6, pp. 2074–2083, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Devic, J. Seuntjens, W. Abdel-Rahman et al., “Accurate skin dose measurements using radiochromic film in clinical applications,” Medical Physics, vol. 33, no. 4, pp. 1116–1124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. L. Hancock, S. S. Donaldson, and R. T. Hoppe, “Cardiac disease following treatment of Hodgkin's disease in children and adolescents,” Journal of Clinical Oncology, vol. 11, no. 7, pp. 1208–1215, 1993. View at Scopus
  12. L. B. Marks, S. M. Bentzen, J. O. Deasy et al., “Radiation dose-volume effects in the lung,” International Journal of Radiation Oncology Biology Physics, vol. 76, no. 3, supplement, pp. S70–S76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. L. A. Dawson, D. Normolle, J. M. Balter, C. J. McGinn, T. S. Lawrence, and R. K. Ten Haken, “Analysis of radiation-induced liver disease using the Lyman NTCP model,” International Journal of Radiation Oncology Biology Physics, vol. 53, no. 4, pp. 810–821, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Emami, J. Lyman, A. Brown et al., “Tolerance of normal tissue to therapeutic irradiation,” International Journal of Radiation Oncology Biology Physics, vol. 21, no. 1, pp. 109–122, 1991. View at Scopus
  15. J. Robert Cassady, “Clinical radiation nephropathy,” International Journal of Radiation Oncology Biology Physics, vol. 31, no. 5, pp. 1249–1256, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. B. D. Kavanagh, C. C. Pan, L. A. Dawson et al., “Radiation dose-volume effects in the stomach and small bowel,” International Journal of Radiation Oncology Biology Physics, vol. 76, no. 3, supplement, pp. S101–S107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Martišíková, B. Ackermann, and O. Jäkel, “Analysis of uncertainties in Gafchromic® EBT film dosimetry of photon beams,” Physics in Medicine and Biology, vol. 53, no. 24, pp. 7013–7027, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Butson, T. Cheung, and P. K. N. Yu, “Weak energy dependence of EBT gafchromic film dose response in the 50 kVp-10 MVp X-ray range,” Applied Radiation and Isotopes, vol. 64, no. 1, pp. 60–62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Arjomandy, R. Tailor, A. Anand et al., “Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron, and proton beam energies,” Medical Physics, vol. 37, no. 5, pp. 1942–1947, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Hartmann, M. Martišíková, and O. Jäkel, “Technical note: homogeneity of gafchromic EBT2 film,” Medical Physics, vol. 37, no. 4, pp. 1753–1756, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Richley, A. C. John, H. Coomber, and S. Fletcher, “Evaluation and optimization of the new EBT2 radiochromic film dosimetry system for patient dose verification in radiotherapy,” Physics in Medicine and Biology, vol. 55, no. 9, pp. 2601–2617, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. W. Jones, B. M. Kacinski, L. D. Wilson et al., “Total skin electron radiation in the management of mycosis fungoides: consensus of the European Organization for Research and Treatment of Cancer (EORTC) Cutaneous Lymphoma Project Group,” Journal of the American Academy of Dermatology, vol. 47, no. 3, pp. 364–370, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Chen, A. G. Agostinelli, L. D. Wilson, and R. Nath, “Matching the dosimetry characteristics of a dual-field Stanford technique to a customized single-field Stanford technique for total skin electron therapy,” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 3, pp. 872–885, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. M. R. Kamstrup, L. Specht, G. L. Skovgaard, and R. Gniadecki, “A prospective, open-label study of low-dose total skin electron beam therapy in mycosis fungoides,” International Journal of Radiation Oncology Biology Physics, vol. 71, no. 4, pp. 1204–1207, 2008. View at Publisher · View at Google Scholar · View at Scopus