About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 124021, 11 pages
http://dx.doi.org/10.1155/2013/124021
Review Article

Interpretation of C-Reactive Protein Concentrations in Critically Ill Patients

1Department of Intensive Care, CHU-Charleroi, Université Libre de Bruxelles, 92 Boulevard Janson, 6000 Charleroi, Belgium
2Experimental Medicine Laboratory, CHU-Charleroi, ULB 222 Unit, 6110 Montigny-Le-Tilleul, Belgium

Received 6 April 2013; Accepted 4 September 2013

Academic Editor: Anthony Gerlach

Copyright © 2013 Christophe Lelubre et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Angus, W. T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, and M. R. Pinsky, “Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care,” Critical Care Medicine, vol. 29, no. 7, pp. 1303–1310, 2001. View at Scopus
  2. G. Kumar, N. Kumar, A. Taneja et al., “Nationwide trends of severe sepsis in the 21st century (2000–2007),” Chest, vol. 140, no. 5, pp. 1223–1231, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. L. Vincent, Y. Sakr, C. L. Sprung et al., “Sepsis in European intensive care units: results of the SOAP study,” Critical Care Medicine, vol. 34, no. 2, pp. 344–353, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. L. Vincent, J. Rello, J. Marshall et al., “International study of the prevalence and outcomes of infection in intensive care units,” Journal of the American Medical Association, vol. 302, no. 21, pp. 2323–2329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Vincent, E. Abraham, D. Annane, G. Bernard, E. Rivers, and G. Van den Berghe, “Reducing mortality in sepsis: new directions,” Critical Care, vol. 6, supplement 3, pp. S1–S18, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. Emerging Risk factors collaboration, S. Kaptoge, E. Di Angelantonio, et al., “C-reactive protein, fibrinogen, and cardiovascular disease prediction,” The New England Journal of Medicine, vol. 367, no. 14, pp. 1310–1320, 2012. View at Publisher · View at Google Scholar
  7. M. B. Pepys and G. M. Hirschfield, “C-reactive protein: a critical update,” Journal of Clinical Investigation, vol. 111, no. 12, pp. 1805–1812, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Molins, E. Peña, G. Vilahur, C. Mendieta, M. Slevin, and L. Badimon, “C-reactive protein isoforms differ in their effects on thrombus growth,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 12, pp. 2239–2246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. W. S. Tillet and T. Francis, “Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus,” Journal of Experimental Medicine, vol. 52, no. 4, pp. 561–571, 1930. View at Publisher · View at Google Scholar
  10. B. Shine, F. C. de Beer, and M. B. Pepys, “Solid phase radioimmunoassays for human C-reactive protein,” Clinica Chimica Acta, vol. 117, no. 1, pp. 13–23, 1981. View at Publisher · View at Google Scholar · View at Scopus
  11. S. G. Lakoski, M. Cushman, M. Criqui et al., “Gender and C-reactive protein: data from the Multiethnic Study of Atherosclerosis (MESA) cohort,” American Heart Journal, vol. 152, no. 3, pp. 593–598, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Pfäfflin and E. Schleicher, “Inflammation markers in point-of-care testing (POCT),” Analytical and Bioanalytical Chemistry, vol. 393, no. 5, pp. 1473–1480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. M. Vigushin, M. B. Pepys, and P. N. Hawkins, “Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease,” Journal of Clinical Investigation, vol. 91, no. 4, pp. 1351–1357, 1993. View at Scopus
  14. W. M. Juma, A. Lira, A. Marzuk, Z. Marzuk, A. M. Hakim, and C. S. Thompson, “C-reactive protein expression in a rodent model of chronic cerebral hypoperfusion,” Brain Research, vol. 1414, pp. 85–93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Meuwissen, A. C. van der Wal, H. W. M. Niessen et al., “Colocalisation of intraplaque C reactive protein, complement, oxidised low density lipoprotein, and macrophages in stable and unstable angina and acute myocardial infarction,” Journal of Clinical Pathology, vol. 59, no. 2, pp. 196–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. E. Kuta and L. L. Baum, “C-reactive protein is produced by a small number of normal human peripheral blood lymphocytes,” Journal of Experimental Medicine, vol. 164, no. 1, pp. 321–326, 1986. View at Scopus
  17. P. Calabro, D. W. Chang, J. T. Willerson, and E. T. H. Yeh, “Release of C-reactive protein in response to inflammatory cytokines by human adipocytes: linking obesity to vascular inflammation,” Journal of the American College of Cardiology, vol. 46, no. 6, pp. 1112–1113, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Ugarte, E. Silva, D. Mercan, A. de Mendo̧nca, and J. Vincent, “Procalcitonin used as a marker of infection in the intensive care unit,” Critical Care Medicine, vol. 27, no. 3, pp. 498–504, 1999. View at Scopus
  19. J. L. Reny, A. Vuagnat, C. Ract, M. O. Benoit, M. Safar, and J. Fagon, “Diagnosis and follow-up of infections in intensive care patients: value of C-reactive protein compared with other clinical and biological variables,” Critical Care Medicine, vol. 30, no. 3, pp. 529–535, 2002. View at Scopus
  20. P. Póvoa, L. Coelho, E. Almeida et al., “C-reactive protein as a marker of infection in critically ill patients,” Clinical Microbiology and Infection, vol. 11, no. 2, pp. 101–108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Póvoa, L. Coelho, E. Almeida et al., “Early identification of intensive care unit-acquired infections with daily monitoring of C-reactive protein: a prospective observational study,” Critical Care, vol. 10, no. 2, p. R63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. M. Lobo, F. R. Lobo, D. P. Bota et al., “C-reactive protein levels correlate with mortality and organ failure in critically III patients,” Chest, vol. 123, no. 6, pp. 2043–2049, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. G. P. Castelli, C. Pognani, M. Cita, A. Stuani, L. Sgarbi, and R. Paladini, “Procalcitonin, C-reactive protein, white blood cells and SOFA score in ICU: diagnosis and monitoring of sepsis,” Minerva Anestesiologica, vol. 72, no. 1-2, pp. 69–80, 2006. View at Scopus
  24. J. Silvestre, P. Póvoa, L. Coelho et al., “Is C-reactive protein a good prognostic marker in septic patients?” Intensive Care Medicine, vol. 35, no. 5, pp. 909–913, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Póvoa, A. M. Teixeira-Pinto, and A. H. Carneiro, “C-reactive protein, an early marker of community-acquired sepsis resolution: a multi-center prospective observational study,” Critical Care, vol. 15, no. 4, p. R169, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. D. M. Vandijck, E. A. Hoste, S. I. Blot, P. O. Depuydt, R. A. Peleman, and J. M. Decruyenaere, “Dynamics of C-reactive protein and white blood cell count in critically ill patients with nosocomial Gram positive vs. Gram negative bacteremia: a historical cohort study,” BMC Infectious Diseases, vol. 7, p. 106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Póvoa, L. Coelho, E. Almeida et al., “Pilot study evaluating C-reactive protein levels in the assessment of response to treatment of severe bloodstream infection,” Clinical Infectious Diseases, vol. 40, no. 12, pp. 1855–1857, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Zhang and H. Ni, “C-reactive protein as a predictor of mortality in critically ill patients: a meta-analysis and systematic review,” Anaesthesia and Intensive Care, vol. 39, no. 5, pp. 854–861, 2011. View at Scopus
  29. P. Póvoa, V. C. Souza-Dantas, M. Soares, and J. I. F. Salluh, “C-reactive protein in critically ill cancer patients with sepsis: influence of neutropenia,” Critical Care, vol. 15, no. 3, p. R129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Fraunberger, Y. Wang, E. Holler et al., “Prognostic value of interleukin 6, procalcitonin, and C-reactive protein levels in intensive care unit patients during first increase of fever,” Shock, vol. 26, no. 1, pp. 10–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Su, B. Han, C. Liu, et al., “Value of soluble TREM-1, procalcitonin and C-reactive protein serum levels as biomarkers for detecting bacteremia among sepsis patients with new fever in intensive care units: a prospective cohort study,” BMC Infectious Diseases, vol. 12, p. 157, 2012. View at Publisher · View at Google Scholar
  32. M. Christ-Crain, D. Jaccard-Stolz, R. Bingisser et al., “Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial,” The Lancet, vol. 363, no. 9409, pp. 600–607, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Peres Bota, M. Van Nuffelen, A. N. Zakariah, and J. Vincent, “Serum levels of C-reactive protein and procalcitonin in critically ill patients with cirrhosis of the liver,” Journal of Laboratory and Clinical Medicine, vol. 146, no. 6, pp. 347–351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. P. Silvestre, L. M. Coehlo, and P. M. Povoa, “Impact of fulminant hepatic failure in C-reactive protein?” Journal of Critical Care, vol. 25, no. 4, pp. 657.e7–657.12, 2010. View at Publisher · View at Google Scholar
  35. G. Hillas, T. Vassilakopoulos, P. Plantza, A. Rasidakis, and P. Bakakos, “C-reactive protein and procalcitonin as predictors of survival and septic shock in ventilator-associated pneumonia,” European Respiratory Journal, vol. 35, no. 4, pp. 805–811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Seligman, M. Meisner, T. C. Lisboa et al., “Decreases in procalcitonin and C-reactive protein are strong predictors of survival in ventilator-associated pneumonia,” Critical Care, vol. 10, no. 5, p. R125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Póvoa, L. Coelho, E. Almeida et al., “C-reactive protein as a marker of ventilator-associated penumonia resolution: a pilot study,” European Respiratory Journal, vol. 25, no. 5, pp. 804–812, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Coelho, P. Póvoa, E. Almeida et al., “Usefulness of C-reactive protein in monitoring the severe community-acquired pneumonia clinical course,” Critical Care, vol. 11, p. R92, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. L. M. Coelho, J. I. Salluh, M. Soares et al., “Patterns of C-reactive protein ratio response in severe community-acquired pneumonia: a cohort study,” Critical Care, vol. 16, p. R53, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. E. K. Bajwa, U. A. Khan, J. L. Januzzi, M. N. Gong, B. T. Thompson, and D. C. Christiani, “Plasma C-reactive protein levels are associated with improved outcome in ARDS,” Chest, vol. 136, no. 2, pp. 471–480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. T. C. Lisboa, R. Seligman, E. Diaz, A. Rodriguez, P. J. Z. Teixeira, and J. Rello, “C-reactive protein correlates with bacterial load and appropriate antibiotic therapy in suspected ventilator-associated pneumonia,” Critical Care Medicine, vol. 36, no. 1, pp. 166–171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. H. W. Bruns, J. J. Oosterheert, E. Hak, and A. I. M. Hoepelman, “Usefulness of consecutive C-reactive protein measurements in follow-up of severe community-acquired pneumonia,” European Respiratory Journal, vol. 32, no. 3, pp. 726–732, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Menendez, J. M. Sahuquillo-Arce, S. Reyes, et al., “Cytokine activation patterns and biomarkers are influenced by microorganisms in community-acquired pneumonia,” Chest, vol. 141, no. 6, pp. 1537–1545, 2012. View at Publisher · View at Google Scholar
  44. I. F. Rowe, A. K. Soutar, and I. M. Trayner, “Rabbit and rat C-reactive proteins bind apolipoprotein B-containing lipoproteins,” Journal of Experimental Medicine, vol. 159, no. 2, pp. 604–616, 1984. View at Scopus
  45. D. Gershov, S. Kim, N. Brot, and K. B. Elkon, “C-reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: implications for systemic autoimmunity,” Journal of Experimental Medicine, vol. 192, no. 9, pp. 1353–1363, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Thomas-Rudolph, T. W. Du Clos, C. M. Snapper, and C. Mold, “C-reactive protein enhances immunity to Streptococcus pneumoniae by targeting uptake to FcγR on dendritic cells,” Journal of Immunology, vol. 178, no. 11, pp. 7283–7291, 2007. View at Scopus
  47. A. Agrawal, A. K. Shrive, T. J. Greenhough, and J. E. Volanakis, “Topology and structure of the C1q-binding site on C-reactive protein,” Journal of Immunology, vol. 166, no. 6, pp. 3998–4004, 2001. View at Scopus
  48. A. I. Okemefuna, R. Nan, A. Miller, J. Gor, and S. J. Perkins, “Complement factor H binds at two independent sites to C-reactive protein in acute phase concentrations,” Journal of Biological Chemistry, vol. 285, no. 2, pp. 1053–1065, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Hellwage, T. S. Jokiranta, M. A. Friese et al., “Complement C3b/C3d and cell surface polyanions are recognized by overlapping binding sites on the most carboxyl-terminal domain of complement factor H,” Journal of Immunology, vol. 169, no. 12, pp. 6935–6944, 2002. View at Scopus
  50. D. Xia and D. Samols, “Transgenic mice expressing rabbit C-reactive protein are resistant to endotoxemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 6, pp. 2575–2580, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. S. U. Eisenhardt, J. R. Thiele, H. Bannasch, G. B. Stark, and K. Peter, “C-reactive protein: how conformational changes influence inflammatory properties,” Cell Cycle, vol. 8, no. 23, pp. 3885–3892, 2009. View at Scopus
  52. Q. Wang, X. Zhu, Q. Xu, X. Ding, Y. E. Chen, and Q. Song, “Effect of C-reactive protein on gene expression in vascular endothelial cells,” American Journal of Physiology, vol. 288, no. 4, pp. H1539–H1545, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. G. M. Hirschfield, J. Herbert, M. C. Kahan, and M. B. Pepys, “Human C-reactive protein does not protect against acute lipopolysaccharide challenge in mice,” Journal of Immunology, vol. 171, no. 11, pp. 6046–6051, 2003. View at Scopus
  54. P. Cirillo, P. Golino, P. Calabrò et al., “C-reactive protein induces tissue factor expression and promotes smooth muscle and endothelial cell proliferation,” Cardiovascular Research, vol. 68, no. 1, pp. 47–55, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Devaraj, D. Y. Xu, and I. Jialal, “C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis,” Circulation, vol. 107, no. 3, pp. 398–404, 2003. View at Scopus
  56. F. Fourrier, “Severe sepsis, coagulation and fibrinolysis: dead end or one way?” Critical Care Medicine, vol. 40, no. 9, pp. 2704–2708, 2012. View at Publisher · View at Google Scholar
  57. R. J. Bisoendial, J. J. P. Kastelein, J. H. M. Levels et al., “Activation of inflammation and coagulation after infusion of C-reactive protein in humans,” Circulation Research, vol. 96, no. 7, pp. 714–716, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. R. J. Bisoendial, J. J. P. Kastelein, S. L. M. Peters et al., “Effects of CRP infusion on endothelial function and coagulation in normocholesterolemic and hypercholesterolemic subjects,” Journal of Lipid Research, vol. 48, no. 4, pp. 952–960, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. B. Pepys, P. N. Hawkins, M. C. Kahan et al., “Proinflammatory effects of bacterial recombinant human C-reactive protein are caused by contamination with bacterial products, not by C-reactive protein itself,” Circulation Research, vol. 97, no. 11, pp. e97–e103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Z. Boudjeltia, M. Piagnerelli, D. Brohée et al., “Relationship between CRP and hypofibrinolysis: is this a possible mechanism to explain the association between CRP and outcome in critically ill patients?” Thrombosis Journal, vol. 2, p. 7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Grad, M. Golomb, I. Mor-Yosef et al., “Transgenic expression of human C-reactive protein suppresses endothelial nitric oxide synthase expression and bioactivity after vascular injury,” American Journal of Physiology, vol. 293, no. 1, pp. H489–H495, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. B. R. Clapp, G. M. Hirschfield, C. Storry et al., “Inflammation and endothelial function: direct vascular effects of human C-reactive protein on nitric oxide bioavailability,” Circulation, vol. 111, no. 12, pp. 1530–1536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Chen, J. Jin, M. Song, H. Dong, G. Zhao, and L. Huang, “C-reactive protein down-regulates endothelial nitric oxide synthase expression and promotes apoptosis in endothelial progenitor cells through receptor for advanced glycation end-products,” Gene, vol. 496, no. 2, pp. 128–135, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Fujii, S. H. Li, P. E. Szmitko, P. W. M. Fedak, and S. Verma, “C-reactive protein alters antioxidant defenses and promotes apoptosis in endothelial progenitor cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 11, pp. 2476–2482, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Kumar, “Optimizing antimicrobial therapy in sepsis and septic shock,” Critical Care Clinics, vol. 25, no. 4, pp. 733–751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. C. Pierrakos and J. Vincent, “Sepsis biomarkers: a review,” Critical Care, vol. 14, no. 1, p. R15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. J. I. F. Salluh, L. S. C. F. Rabello, M. M. Rosolem et al., “The impact of coagulation parameters on the outcomes of patients with severe community-acquired pneumonia requiring intensive care unit admission,” Journal of Critical Care, vol. 26, no. 5, pp. 496–501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Perren, B. Cerutti, M. Lepori et al., “Influence of steroids on Procalcitonin and C-reactive protein in patients with COPD and community-acquired pneumonia,” Infection, vol. 36, no. 2, pp. 163–166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. P. M. Ridker and J. D. Silvertown, “Inflammation, C-reactive protein, and atherothrombosis,” Journal of Periodontology, vol. 79, no. 8, pp. 1544–1551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. J. L. Vincent, A. de Mendonça, F. Cantraine et al., “Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study,” Critical Care Medicine, vol. 26, no. 11, pp. 1793–1800, 1998. View at Scopus
  71. M. Hochreiter, T. Köhler, A. M. Schweiger et al., “Procalcitonin to guide duration of antibiotic therapy in intensive care patients: a randomized prospective controlled trial,” Critical Care, vol. 13, no. 3, p. R83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. X. Schmit and J. L. Vincent, “The time course of blood C-reactive protein concentrations in relation to the response to initial antimicrobial therapy in patients with sepsis,” Infection, vol. 36, no. 3, pp. 213–219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. J. L. Vincent and T. Gustot, “Sepsis and cirrhosis: many similarities,” Acta Gastro-Enterologica Belgica, vol. 73, no. 4, pp. 472–478, 2010. View at Scopus