About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 132759, 8 pages
http://dx.doi.org/10.1155/2013/132759
Research Article

Antioxidant Properties of Brazilian Tropical Fruits by Correlation between Different Assays

1Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Dorsoduro 2137, 30123 Venice, Italy
2Institute of Biosciences, UNESP University, Campus of Botucatu, CP 510, 18618-000 Botucatu, SA, Brazil

Received 16 April 2013; Revised 16 July 2013; Accepted 23 July 2013

Academic Editor: Filippo De Simone

Copyright © 2013 Elena Gregoris et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Willet and W. C. Eat, Drink, and Be Healthy: The Harvard Medical School Guide to Healthy Eating, McGraw-Hill, New York, NY, USA, 2001.
  2. Z. Juranic and K. Z. Ziza, “Biological activities of berries: from antioxidant capacity to anti-cancer effects,” BioFactors, vol. 23, no. 4, pp. 207–211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Zafra-Stone, T. Yasmin, M. Bagchi, A. Chatterjee, J. A. Vinson, and D. Bagchi, “Berry anthocyanins as novel antioxidants in human health and disease prevention,” Molecular Nutrition and Food Research, vol. 51, no. 6, pp. 675–683, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. R. Ness and J. W. Powles, “Fruit and vegetables, and cardiovascular disease: a review,” International Journal of Epidemiology, vol. 26, no. 1, pp. 1–13, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Esterbauer, M. Dieber-Rotheneder, G. Striegl, and G. Waeg, “Role of vitamin E in preventing the oxidation of low-density lipoprotein,” American Journal of Clinical Nutrition, vol. 53, pp. 314s–321s, 1991. View at Scopus
  6. M. A. Eastwood, “Interaction of dietary antioxidants in vivo: how fruit and vegetables prevent disease?” Quarterly Journal of Medicine, vol. 92, no. 9, pp. 527–530, 1999. View at Scopus
  7. L. J. Marnett, “Oxyradicals and DNA damage,” Carcinogenesis, vol. 21, no. 3, pp. 361–370, 2000. View at Scopus
  8. B. Halliwell and J. M. C. Gutteridge, Free Radical Biology and Medicine, Oxford University Press, Oxford, UK, 3rd edition, 1999.
  9. H. Esterbauer and P. Ramos, “Chemistry and pathophysiology of oxidation of LDL,” Reviews of Physiology Biochemistry and Pharmacology, vol. 127, pp. 31–64, 1996. View at Scopus
  10. H. Wang, G. Cao, and R. L. Prior, “Total antioxidant capacity of fruits,” Journal of Agricultural and Food Chemistry, vol. 44, no. 3, pp. 701–705, 1996. View at Scopus
  11. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chemico-Biological Interactions, vol. 160, no. 1, pp. 1–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Antolovich, P. D. Prenzler, E. Patsalides, S. McDonald, and K. Robards, “Methods for testing antioxidant activity,” Analyst, vol. 127, no. 1, pp. 183–198, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Gregoris and R. Stevanato, “Correlations between polyphenolic composition and antioxidant activity of Venetian propolis,” Food and Chemical Toxicology, vol. 48, no. 1, pp. 76–82, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Chiva-Blanch and F. Visioli, “Polyphenols and health: moving beyond antioxidants,” Journal of Berry Research, vol. 2, pp. 63–71, 2012.
  16. M. Takashima, M. Horie, M. Shichiri, Y. Hagihara, Y. Yoshida, and E. Niki, “Assessment of antioxidant capacity for scavenging free radicals in vitro: a rational basis and practical application,” Free Radical Biology and Medicine, vol. 52, no. 7, pp. 1242–1252, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Niki, “Antioxidant capacity: which capacity and how to assess it?” Journal of Berry Research, vol. 1, pp. 169–176, 2011.
  18. R. Stevanato, S. Fabris, and F. Momo, “New enzymatic method for the determination of total phenolic content in tea and wine,” Journal of Agricultural and Food Chemistry, vol. 52, no. 20, pp. 6287–6293, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Mahattanatawee, J. A. Manthey, G. Luzio, S. T. Talcott, K. Goodner, and E. A. Baldwin, “Total antioxidant activity and fiber content of select Florida-grown tropical fruits,” Journal of Agricultural and Food Chemistry, vol. 54, no. 19, pp. 7355–7363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. A. de Assis, J. C. R. Vellosa, I. L. Brunetti et al., “Antioxidant activity, ascorbic acid and total phenol of exotic fruits occurring in Brazil,” International Journal of Food Sciences and Nutrition, vol. 60, no. 5, pp. 439–448, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. N. M. A. Hassimotto, “Antioxidant capacity of Brazilian fruit, vegetables and commercially-frozen fruit pulps,” Journal of Food Composition and Analysis, vol. 22, no. 5, pp. 394–396, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. I. Genovese, M. D. Pinto, A. E. D. Gonçalves, and F. M. Lajolo, “Bioactive compounds and antioxidant capacity of exotic fruits and commercial frozen pulps from Brazil,” Food Science and Technology International, vol. 14, no. 3, pp. 207–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. A. Manthey and P. Perkins-Veazie, “Influences of harvest date and location on the levels of β-carotene, ascorbic acid, total phenols, the in vitro antioxidant capacity, and phenolic profiles of five commercial varieties of mango (Mangifera indica L.),” Journal of Agricultural and Food Chemistry, vol. 57, no. 22, pp. 10825–10830, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Plaza, C. Sánchez-Moreno, S. de Pascual-Teresa, B. de Ancos, and M. P. Cano, “Fatty acids, sterols, and antioxidant activity in minimally processed avocados during refrigerated storage,” Journal of Agricultural and Food Chemistry, vol. 57, no. 8, pp. 3204–3209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Sariburun, S. Şahin, C. Demir, C. Türkben, and V. Uylaşer, “Phenolic content and antioxidant activity of raspberry and blackberry cultivars,” Journal of Food Science, vol. 75, no. 4, pp. C328–C335, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Y. Wang and H. Lin, “Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage,” Journal of Agricultural and Food Chemistry, vol. 48, no. 2, pp. 140–146, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Fabris, F. Momo, G. Ravagnan, and R. Stevanato, “Antioxidant properties of resveratrol and piceid on lipid peroxidation in micelles and monolamellar liposomes,” Biophysical Chemistry, vol. 135, no. 1–3, pp. 76–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. S. Blois, “Antioxidant determinations by the use of a stable free radical,” Nature, vol. 181, no. 4617, pp. 1199–1200, 1958. View at Publisher · View at Google Scholar · View at Scopus
  29. O. A. Zaporozhets, E. A. Krushinsksya, V. N. Barvinchenko, N. A. Lipkovskaya, and V. K. Pogorelyi, “Spectrophotometric determination of hydroxycynnamic acid and related compounds in Echinacea preparations,” Pharmaceutical Chemistry Journal, vol. 37, no. 12, pp. 632–636, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Giusti and R. E. Worsltad, “Characterization and measurement of anthocyanins by UV-visible spectroscopy,” in Current Protocols in Food Analytical Chemistry, pp. F1. 2. 1–F1. 2. 13, John Wiley & Sons, New York, NY, USA, 2001.
  31. J. H. Roe and C. A. Kuether, “The determination of ascobic acid in whole blood and urine through the 2, 4-dintrophenylhydrazine derivative of dehydroascorbic acid,” The Journal of Biological Chemistry, vol. 147, pp. 399–407, 1943.
  32. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radical Biology and Medicine, vol. 26, no. 9-10, pp. 1231–1237, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. W. A. Pryor, J. A. Cornicelli, L. J. Devall et al., “A rapid screening test to determine the antioxidant potencies of natural and synthetic antioxidants,” Journal of Organic Chemistry, vol. 58, no. 13, pp. 3521–3532, 1993. View at Scopus
  34. G. Cao, H. M. Alessio, and R. G. Cutler, “Oxygen-radical absorbance capacity assay for antioxidants,” Free Radical Biology and Medicine, vol. 14, no. 3, pp. 303–311, 1993. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Stevanato, S. Fabris, M. Bertelle, E. Gregoris, and F. Momo, “Phenolic content and antioxidant properties of fermenting musts and fruit and vegetable fresh juices,” Acta Alimentaria, vol. 38, no. 2, pp. 193–203, 2009.
  36. D. Huang, O. U. Boxin, and R. L. Prior, “The chemistry behind antioxidant capacity assays,” Journal of Agricultural and Food Chemistry, vol. 53, no. 6, pp. 1841–1856, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, “Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,” Methods in Enzymology, vol. 299, pp. 152–178, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Nanjo, K. Goto, R. Seto, M. Suzuki, M. Sakai, and Y. Hara, “Scavenging effects of tea catechins and their derivatives on 1,1- diphenyl-2-picrylhydrazyl radical,” Free Radical Biology and Medicine, vol. 21, no. 6, pp. 895–902, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Lorenzi, S. F. Sartori, L. B. Bacher, and M. T. C. de Lacerda, Frutas Brasileiras, Instituto Planetarium de Estudos da Flora LTDA, Sao Paulo, Brazil, 2006.