About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 134675, 7 pages
http://dx.doi.org/10.1155/2013/134675
Research Article

Development of a Novel Reference Plasmid for Accurate Quantification of Genetically Modified Kefeng6 Rice DNA in Food and Feed Samples

Biotechnology Research Institute, Chinese Agricultural Academy of Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China

Received 28 June 2013; Revised 20 September 2013; Accepted 4 October 2013

Academic Editor: Guihua H. Bai

Copyright © 2013 Liang Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. James, Global Status of Commercialized Biotech/GM Crops: 2012, The International Service for the Acquisition of Agri-Biotech Applications (ISAAA), 2013.
  2. L. Yang, J. Guo, A. Pan et al., “Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule,” Journal of Agricultural and Food Chemistry, vol. 55, no. 1, pp. 15–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Burrell, C. Foy, and M. Burns, “Applicability of three alternative instruments for food authenticity analysis: GMO identification,” Biotechnology Research International, vol. 2011, Article ID 838232, 8 pages, 2011. View at Publisher · View at Google Scholar
  4. European Commission, “Recommendation 2004/787/EC of 4 October 2004 on technical guidance for sampling and detection of genetically modified organisms and material produced from genetically modified organisms as or in products in the context of Regulation (EC) No. 1830/2003,” Official Journal of the European Union, vol. 348, pp. 18–26, 2004.
  5. C. A. Heid, J. Stevens, K. J. Livak, and P. M. Williams, “Real time quantitative PCR,” Genome Research, vol. 6, no. 10, pp. 986–994, 1996. View at Scopus
  6. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. T. D. Schmittgen, E. J. Lee, J. Jiang et al., “Real-time PCR quantification of precursor and mature microRNA,” Methods, vol. 44, no. 1, pp. 31–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. A. Heyries, C. Tropini, M. Vaninsberghe et al., “Megapixel digital PCR,” Nature Methods, vol. 8, no. 8, pp. 649–651, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. J. Burns, A. M. Burrell, and C. A. Foy, “The applicability of digital PCR for the assessment of detection limits in GMO analysis,” European Food Research and Technology, vol. 231, no. 3, pp. 353–362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Dube, J. Qin, and R. Ramakrishnan, “Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device,” PLoS ONE, vol. 3, no. 8, Article ID e2876, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Vogelstein and K. W. Kinzler, “Digital PCR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 16, pp. 9236–9241, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Pohl and L.-M. Shih, “Principle and applications of digital PCR,” Expert Review of Molecular Diagnostics, vol. 4, no. 1, pp. 41–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Sanders, J. F. Huggett, C. A. Bushell, S. Cowen, D. J. Scott, and C. A. Foy, “Evaluation of digital PCR for absolute DNA quantification,” Analytical Chemistry, vol. 83, no. 17, pp. 6474–6484, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Diehl, M. Li, D. Dressman et al., “Detection and quantification of mutations in the plasma of patients with colorectal tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 45, pp. 16368–16373, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. V. G. Oehler, J. Qin, R. Ramakrishnan et al., “Absolute quantitative detection of ABL tyrosine kinase domain point mutations in chronic myeloid leukemia using a novel nanofluidic platform and mutation-specific PCR,” Leukemia, vol. 23, no. 2, pp. 396–399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. M. D. Lo, F. M. F. Lun, K. C. A. Chan et al., “Digital PCR for the molecular detection of fetal chromosomal aneuploidy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 32, pp. 13116–13121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. M. D. Lo, N. B. Y. Tsui, R. W. K. Chiu et al., “Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection,” Nature Medicine, vol. 13, no. 2, pp. 218–223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. M. D. Lo and R. W. K. Chiu, “Noninvasive prenatal diagnosis of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis,” Clinical Chemistry, vol. 54, no. 3, pp. 461–466, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Guo, M. Huss, G. Q. Tong et al., “Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst,” Developmental Cell, vol. 18, no. 4, pp. 675–685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. L. Spurgeon, R. C. Jones, and R. Ramakrishnan, “High throughput gene expression measurement with real time PCR in a microfluidic dynamic array,” PLoS ONE, vol. 3, no. 2, Article ID e1662, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Warren, D. Bryder, I. L. Weissman, and S. R. Quake, “Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 47, pp. 17807–17812, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Jones, S. Bhide, E. Chin et al., “Targeted polymerase chain reaction-based enrichment and next generation sequencing for diagnostic testing of congenital disorders of glycosylation,” Genetics in Medicine, vol. 13, no. 11, pp. 921–932, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Kim, M. S. Bartsch, R. F. Renzi et al., “Automated digital microfluidic sample preparation for next-generation DNA sequencing,” Journal of Laboratory Automation, vol. 16, no. 6, pp. 405–414, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. R. A. White III, P. C. Blainey, H. C. Fan, and S. R. Quake, “Digital PCR provides sensitive and absolute calibration for high throughput sequencing,” BMC Genomics, vol. 10, article 116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Zernant, C. Schubert, K. M. Im et al., “Analysis of the ABCA4 gene by next-generation sequencing,” Investigative Ophthalmology & Visual Science, vol. 52, no. 11, pp. 8479–8487, 2011. View at Scopus
  26. P. Corbisier, S. Bhat, L. Partis, V. Rui Dan Xie, and K. R. Emslie, “Absolute quantification of genetically modified MON810 maize (Zea mays L.) by digital polymerase chain reaction,” Analytical and Bioanalytical Chemistry, vol. 396, no. 6, pp. 2143–2150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S. R. M. Broeders, S. C. J. De Keersmaecker, and N. H. C. Roosens, “How to deal with the upcoming challenges in GMO detection in food and feed,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 402418, 11 pages, 2012. View at Publisher · View at Google Scholar
  28. X. Huang, Y. Zhang, L. Hou, Q. Zhang, H. Chen, and S. Zhu, “The quantitative real-time PCR detection of genetically modified rice kefeng No. 6,” Biotechnology Bulletin, vol. 2, pp. 90–93, 2010.
  29. M. Hernández, T. Esteve, and M. Pla, “Real-time polymerase chain reaction based assays for quantitative detection of barley, rice, sunflower, and wheat,” Journal of Agricultural and Food Chemistry, vol. 53, no. 18, pp. 7003–7009, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Bhat, J. Herrmann, P. Armishaw, P. Corbisier, and K. R. Emslie, “Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number,” Analytical and Bioanalytical Chemistry, vol. 394, no. 2, pp. 457–467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. BioMark, “BioMark advanced development protocol 10. absolute quantitation using the digital array,” Fluidigm Corporation, S.F.
  32. S. Bhat, N. Curach, T. Mostyn, G. S. Bains, K. R. Griffiths, and K. R. Emslie, “Comparison of methods for accurate quantification of DNA mass concentration with traceability to the international system of units,” Analytical Chemistry, vol. 82, no. 17, pp. 7185–7192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Chaouachi, A. Alaya, I. B. H. Ali, et al., “Development of real-time PCR method for the detection and the quantification of a new endogenous reference gene in sugar beet “Beta vulgaris L.”: GMO application,” Plant Cell Reports, vol. 32, no. 1, pp. 117–128, 2013.
  34. X. Wang, D. Teng, Y. Yang, F. Tian, Q. Guan, and J. Wang, “Construction of a reference plasmid molecule containing eight targets for the detection of genetically modified crops,” Applied Microbiology and Biotechnology, vol. 90, no. 2, pp. 721–731, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. C.-C. Huang and T.-M. Pan, “Event-specific real-time detection and quantification of genetically modified roundup ready soybean,” Journal of Agricultural and Food Chemistry, vol. 53, no. 10, pp. 3833–3839, 2005. View at Publisher · View at Google Scholar · View at Scopus