About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 135086, 13 pages
http://dx.doi.org/10.1155/2013/135086
Research Article

A Pipeline with Multiplex Reverse Transcription Polymerase Chain Reaction and Microarray for Screening of Chromosomal Translocations in Leukemia

1School of Life Science and Technology, Tongji University, Shanghai 200092, China
2National Engineering Research Center for Biochip at Shanghai, Shanghai 201203, China
3Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
4State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
5Wayen Biotechnologies Inc., Shanghai 201203, China

Received 21 May 2013; Revised 1 August 2013; Accepted 19 August 2013

Academic Editor: Luca Arcaini

Copyright © 2013 Fei-Fei Xiong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Chromosome rearrangements and fusion genes present major portion of leukemogenesis and contribute to leukemic subtypes. It is practical and helpful to detect the fusion genes in clinic diagnosis of leukemia. Present application of reverse transcription polymerase chain reaction (RT-PCR) method to detect the fusion gene transcripts is effective, but time- and labor-consuming. To set up a simple and rapid system, we established a method that combined multiplex RT-PCR and microarray. We selected 15 clinically most frequently observed chromosomal rearrangements generating more than 50 fusion gene variants. Chimeric reverse primers and chimeric PCR primers containing both gene-specific and universal sequences were applied in the procedure of multiplex RT-PCR, and then the PCR products hybridized with a designed microarray. With this approach, among 200 clinic samples, 63 samples were detected to have gene rearrangements. All the detected fusion genes positive and negative were validated with RT-PCR and Sanger sequencing. Our data suggested that the RT-PCR-microarray pipeline could screen 15 partner gene pairs simultaneously at the same accuracy of the fusion gene detection with regular RT-PCR. The pipeline showed effectiveness in multiple fusion genes screening in clinic samples.