About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 135086, 13 pages
http://dx.doi.org/10.1155/2013/135086
Research Article

A Pipeline with Multiplex Reverse Transcription Polymerase Chain Reaction and Microarray for Screening of Chromosomal Translocations in Leukemia

1School of Life Science and Technology, Tongji University, Shanghai 200092, China
2National Engineering Research Center for Biochip at Shanghai, Shanghai 201203, China
3Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
4State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
5Wayen Biotechnologies Inc., Shanghai 201203, China

Received 21 May 2013; Revised 1 August 2013; Accepted 19 August 2013

Academic Editor: Luca Arcaini

Copyright © 2013 Fei-Fei Xiong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Vardiman, N. L. Harris, and R. D. Brunning, “The World Health Organization (WHO) classification of the myeloid neoplasms,” Blood, vol. 100, no. 7, pp. 2292–2302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. J. W. Vardiman, J. Thiele, D. A. Arber et al., “The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes,” Blood, vol. 114, no. 5, pp. 937–951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. T. Look, “Oncogenic transcription factors in the human acute leukemias,” Science, vol. 278, no. 5340, pp. 1059–1064, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Gabert, E. Beillard, V. H. J. van der Velden et al., “Standardization and quality control studies of 'real time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer Program,” Leukemia, vol. 17, no. 12, pp. 2318–2357, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Raanani and I. Ben-Bassat, “Detection of minimal residual disease in acute myelogenous leukemia,” Acta Haematologica, vol. 112, no. 1-2, pp. 40–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. C.-H. Pui, M. V. Relling, and J. R. Downing, “Mechanisms of disease: acute lymphoblastic leukemia,” The New England Journal of Medicine, vol. 350, no. 15, pp. 1535–1548, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Pallisgaard, P. Hokland, D. C. Riishøj, B. Pedersen, and P. Jørgensen, “Multiplex reverse transcription-polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia,” Blood, vol. 92, no. 2, pp. 574–588, 1998. View at Scopus
  8. M. Salto-Tellez, S. G. Shelat, B. Benoit et al., “Multiplex RT-PCR for the detection of leukemia-associated translocations: validation and application to routine molecular diagnostic practice,” Journal of Molecular Diagnostics, vol. 5, no. 4, pp. 231–236, 2003. View at Scopus
  9. R. L. King, M. Naghashpour, C. D. Watt, J. J. D. Morrissette, and A. Bagg, “A comparative analysis of molecular genetic and conventional cytogenetic detection of diagnostically important translocations in more than 400 cases of acute leukemia, highlighting the frequency of false-negative conventional cytogenetics,” American Journal of Clinical Pathology, vol. 135, no. 6, pp. 921–928, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Wallace, Y. Zhou, G. N. Usmani et al., “BARCODE-ALL: accelerated and cost-effective genetic risk stratification in acute leukemia using spectrally addressable liquid bead microarrays,” Leukemia, vol. 17, no. 7, pp. 1411–1413, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Nasedkina, P. Domer, V. Zharinov, J. Hoberg, Y. Lysov, and A. Mirzabekov, “Identification of chromosomal translocations in leukemias by hybridization with oligonucleotide microarrays,” Haematologica, vol. 87, no. 4, pp. 363–372, 2002. View at Scopus
  12. T. V. Nasedkina, V. S. Zharinov, E. A. Isaeva et al., “Clinical Screening of Gene Rearrangements in Childhood Leukemia by Using a Multiplex Polymerase Chain Reaction-Microarray Approach,” Clinical Cancer Research, vol. 9, no. 15, pp. 5620–5629, 2003. View at Scopus
  13. N. Maroc, A. Morel, E. Beillard et al., “A diagnostic biochip for the comprehensive analysis of MLL translocations in acute leukemia,” Leukemia, vol. 18, no. 9, pp. 1522–1530, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Giusiano, C. Formisano-Treziny, A. Benziane et al., “Development of a biochip-based assay integrated in a global strategy for identification of fusion transcripts in acute myeloid leukemia: a work flow for acute myeloid leukemia diagnosis,” International Journal of Laboratory Hematology, vol. 32, no. 4, pp. 398–409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Beillard, N. Pallisgaard, V. H. J. van der Velden et al., “Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)—a Europe against cancer program,” Leukemia, vol. 17, no. 12, pp. 2474–2486, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. C.-H. Pui, L. L. Robison, and A. T. Look, “Acute lymphoblastic leukaemia,” The Lancet, vol. 371, no. 9617, pp. 1030–1043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Aricò, M. G. Valsecchi, B. Camitta et al., “Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia,” The New England Journal of Medicine, vol. 342, no. 14, pp. 998–1006, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Grimwade and R. K. Hills, “Independent prognostic factors for AML outcome,” Hematology, pp. 385–395, 2009. View at Scopus
  19. S. E. Aspland, H. H. Bendall, and C. Murre, “The role of E2A-PBX1 in leukemogenesis,” Oncogene, vol. 20, no. 40, pp. 5708–5717, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. C.-H. Pui, J. M. Boyett, G. K. Rivera et al., “Long-term results of total therapy studies 11, 12 and 13A for childhood acute lymphoblastic leukemia at St Jude children's research hospital,” Leukemia, vol. 14, no. 12, pp. 2286–2294, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Schrappe, M. Aricò, J. Harbott et al., “Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome,” Blood, vol. 92, no. 8, pp. 2730–2741, 1998. View at Scopus
  22. C.-H. Pui, P. S. Gaynon, J. M. Boyett et al., “Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region,” The Lancet, vol. 359, no. 9321, pp. 1909–1915, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. J. B. Nachman, N. A. Heerema, H. Sather et al., “Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia,” Blood, vol. 110, no. 4, pp. 1112–1115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. E. Rubnitz, S. C. Raimondi, X. Tong et al., “Favorable impact of the t(9;11) in childhood acute myeloid leukemia,” Journal of Clinical Oncology, vol. 20, no. 9, pp. 2302–2309, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Z. Shi, J. M. Morrissey, and J. D. Rowley, “Screening and quantification of multiple chromosome translocations in human leukemia,” Clinical Chemistry, vol. 49, no. 7, pp. 1066–1073, 2003. View at Publisher · View at Google Scholar · View at Scopus