About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 137985, 11 pages
http://dx.doi.org/10.1155/2013/137985
Review Article

Materials and Manufacturing Technologies Available for Production of a Pediatric Bioabsorbable Stent

Mattel Children’s Hospital, University of California, Los Angeles, CA 90095, USA

Received 23 May 2013; Accepted 6 August 2013

Academic Editor: Florence Siepmann

Copyright © 2013 Ryan D. Alexy and Daniel S. Levi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Ormiston and P. W. S. Serruys, “Bioabsorbable coronary stents,” Circulation, vol. 2, no. 3, pp. 255–260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Zartner, M. Buettner, H. Singer, and M. Sigler, “First biodegradable metal stent in a child with congenital heart disease: evaluation of macro and histopathology,” Catheterization and Cardiovascular Interventions, vol. 69, no. 3, pp. 443–446, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. P. W. Serruys, J. A. Ormiston, Y. Onuma et al., “A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods,” The Lancet, vol. 373, no. 9667, pp. 897–910, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Gonzalo and C. Macaya, “absorbable stent: focus on clinical applications and benefits,” Journal of Vascular Health and Risk Management, vol. 8, pp. 125–132, 2012.
  5. Y. Onuma, J. Ormiston, and P. W. Serruys, “Bioresorbable scaffold technologies,” Circulation Journal, vol. 75, no. 3, pp. 509–520, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Ormiston and P. W. S. Serruys, “Bioabsorbable coronary stents,” Circulation, vol. 2, no. 3, pp. 255–260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Eggebrecht, J. Rodermann, P. Hunold et al., “Images in cardiovascular medicine. Novel magnetic resonance-compatible coronary stent: the absorbable magnesium-alloy stent,” Circulation, vol. 112, no. 18, pp. e303–e304, 2005. View at Scopus
  8. P. W. Serruys, H. M. Garcia-Garcia, and Y. Onuma, “From metallic cages to transient bioresorbable scaffolds: change in paradigm of coronary revascularization in the upcoming decade?” European Heart Journal, vol. 33, no. 1, pp. 16–25, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Erne, M. Schier, and T. J. Resink, “The road to bioabsorbable stents: reaching clinical reality?” CardioVascular and Interventional Radiology, vol. 29, no. 1, pp. 11–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. D. S. Levi and Cheng, “Biodegradable implants,” in Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care, E. M. Dacruz, D. Ivy, V. Hraska, and J. Jagger, Eds.
  11. C. A. Loffredo, “Epidemiology of cardiovascular malformations: prevalence and risk factors,” Journal of Medical Genetics, vol. 97, no. 4, pp. 319–325, 2000.
  12. T. J. Forbes, D. W. Kim, W. Du et al., “Comparison of surgical, stent, and balloon angioplasty treatment of native coarctation of the aorta: an observational study by the CCISC (Congenital cardiovascular interventional study consortium),” Journal of the American College of Cardiology, vol. 58, no. 25, pp. 2664–2674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Kaushal, C. L. Backer, J. N. Patel et al., “Coarctation of the aorta: midterm outcomes of resection with extended end-to-end anastomosis,” Annals of Thoracic Surgery, vol. 88, no. 6, pp. 1932–1938, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Noonan, “Noonan syndrome: an update and review for the primary pediatrician,” Clinical Pediatrics, vol. 33, no. 9, pp. 548–555, 1994. View at Scopus
  15. D. Alagille, A. Estrada, M. Hadchouel, et al., “Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases,” Journal of Pediatrics, vol. 110, no. 2, pp. 195–200, 1987. View at Scopus
  16. P. C. Painter and M. M. Coleman, Fundamentals of Polymer Science: An Introductory Text, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2000.
  17. A. Göpferich, “Mechanisms of polymer degradation and erosion,” Biomaterials, vol. 17, no. 2, pp. 103–114, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. A. C. Vieira, J. C. Vieira, J. M. Ferra, F. D. Magalhães, R. M. Guedes, and A. T. Marques, “Mechanical study of PLA-PCL fibers during in vitro degradation,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, no. 3, pp. 451–460, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Garlotta, “A literature review of poly(lactic acid),” Journal of Polymers and the Environment, vol. 9, no. 2, pp. 63–84, 2001. View at Scopus
  20. J. O. Hollinger and G. C. Battistone, “Biodegradable bone repair materials. Synthetic polymers and ceramics,” Clinical Orthopaedics and Related Research, no. 207, pp. 290–305, 1986. View at Scopus
  21. H. Tamai, K. Igaki, E. Kyo et al., “Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans,” Circulation, vol. 102, no. 4, pp. 399–404, 2000. View at Scopus
  22. S. Garg and P. Serruys, “Biodegradable and non-biodegradable stents,” Minerva Cardioangiologica, vol. 57, no. 5, pp. 537–565, 2009. View at Scopus
  23. T. Yamawaki, H. Shimokawa, T. Kozai et al., “Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs in vivo,” Journal of the American College of Cardiology, vol. 32, no. 3, pp. 780–786, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. J. A. Ormiston, P. W. Serruys, E. Regar et al., “A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial,” The Lancet, vol. 371, no. 9616, pp. 899–907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Onuma, P. W. Serruys, L. E. L. Perkins et al., “Intracoronary optical coherence tomography and histology at 1 month and 2, 3, and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: An attempt to decipher the human optical coherence tomography images in the ABSORB trial,” Circulation, vol. 122, no. 22, pp. 2288–2300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. P. W. Serruys, Y. Onuma, D. Dudek et al., “Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de Novo Coronary Artery stenosis: 12-month clinical and imaging outcomes,” Journal of the American College of Cardiology, vol. 58, no. 15, pp. 1578–1588, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. Euro PCR Focus Group, “Bioresorbable scaffold,” March 2013, http://www.pcronline.com/PCR-focusgroup/PCR-FOCUS-GROUP-ON-BIORESORBABLE-VASCULAR-SCAFFOLDS-MARCH-2012.
  28. Y. Onuma and P. W. Serruys, “Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization?” Circulation, vol. 123, no. 7, pp. 779–797, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. Abbott Vascular, Temecula, California Laboratory.
  30. “Press Release- New Data Reinforce Strong Long-Term Clinical Performance of Abbott's Absorb Bioresorbable Vascular Scaffold,” 2013, http://www.abbott.com/press-release/new-data-reinforce-strong-longterm-clinical-performance-of-abbotts-absorb-bioresorbable-vascular.htm.
  31. R. Waksman, “Update on bioabsorbable stents: from bench to clinical,” Journal of Interventional Cardiology, vol. 19, no. 5, pp. 414–421, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. C. G. Pitt, M. M. Gratzl, and A. R. Jeffcoat, “Sustained drug delivery systems. II: factors affecting release rates from poly(ε-caprolactone) and related biodegradable polyesters,” Journal of Pharmaceutical Sciences, vol. 68, no. 12, pp. 1534–1538, 1979. View at Scopus
  33. S.-J. Liu, F.-J. Chiang, C.-Y. Hsiao, Y.-C. Kau, and K.-S. Liu, “Fabrication of balloon-expandable self-lock drug-eluting polycaprolactone stents using micro-injection molding and spray coating techniques,” Annals of Biomedical Engineering, vol. 38, no. 10, pp. 3185–3194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Jabara, N. Chronds, and K. Robinson, “Novel bioabsorbable salicylate-based polymer as a drug-eluting stent coating,” Catheterization and Cardiovascular Interventions, vol. 72, no. 2, pp. 186–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. P. W. Serruys, H. M. Garcia-Garcia, and Y. Onuma, “From metallic cages to transient bioresorbable scaffolds: change in paradigm of coronary revascularization in the upcoming decade?” European Heart Journal, vol. 33, no. 1, pp. 16–25, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Colotti, A. Ilari, A. Boffi, and V. Morea, “Metals and metal derivatives in medicine,” Mini Reviews in Medicinal Chemistry, vol. 13, no. 2, pp. 211–221, 2013.
  37. M. Watanabe, A. Shinohara, T. Matsukawa et al., “Chronic magnesium deficiency decreases tolerance to hypoxia/reoxygenation injury in mouse heart,” Life Sciences, vol. 88, no. 15-16, pp. 658–663, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, and A. Haverich, “Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?” Heart, vol. 89, no. 6, pp. 651–656, 2003. View at Scopus
  39. K. Sternberg, M. Gratz, K. Koeck et al., “Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro,” Journal of Biomedical Materials Research B, vol. 100, no. 1, pp. 41–50, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Barlis, J. Tanigawa, and C. Di Mario, “Coronary bioabsorbable magnesium stent: 15-Month intravascular ultrasound and optical coherence tomography findings,” European Heart Journal, vol. 28, no. 19, p. 2319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. E. Gray-Munro, C. Seguin, and M. Strong, “Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31,” Journal of Biomedical Materials Research A, vol. 91, no. 1, pp. 221–230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Xu and A. Yamamoto, “In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition,” Applied Surface Science, vol. 258, no. 17, pp. 6353–6358, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Xu and A. Yamamoto, “Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating,” Colloids and Surfaces B, vol. 93, pp. 67–74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Waksman, R. Erbel, C. Di Mario et al., “Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries,” Journal of the American College of Cardiology, vol. 2, no. 4, pp. 312–320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. Biotronik Press Release, “BIOTRONIK Announces Positive 6-Month Results for DREAMS, the Pioneering Drug-Eluting Absorbable Metal Scaffold,” 2011, http://www.biotronik.com/wps/wcm/connect/int_web/biotronik/newsroom/press_releases?p=http://www.biotronik.com/wps/wcm/connect/int_web/biotronik/newsroom/press_releases/press_release_biosolve_i&pw=770&pt.
  46. M. Haude, R. Erbel, P. Erne, et al., “Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicenter first-in-man BIOSOLVE-1 trial,” The Lancet, vol. 381, pp. 836–844, 2013.
  47. P. Zartner, R. Cesnjevar, H. Singer, and M. Weyand, “First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby,” Catheterization and Cardiovascular Interventions, vol. 66, no. 4, pp. 590–594, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Schranz, P. Zartner, I. Michel-Behnke, and H. Akintürk, “Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn,” Catheterization and Cardiovascular Interventions, vol. 67, no. 5, pp. 671–673, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Peuster, P. Wohlsein, M. Brügmann et al., “A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal - Results 6-18 months after implantation into New Zealand white rabbits,” Heart, vol. 86, no. 5, pp. 563–569, 2001. View at Scopus
  50. M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and C. von Schnakenburg, “Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta,” Biomaterials, vol. 27, no. 28, pp. 4955–4962, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Auerbach and H. Ballard, “Clinical use of intravenous iron: administration, efficacy, and safety,” Hematology, vol. 2010, pp. 338–347, 2010. View at Scopus
  52. H. Hermawan, H. Alamdari, D. Mantovani, and D. Dubé, “Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy,” Powder Metallurgy, vol. 51, no. 1, pp. 38–45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. H. D. Merchant, W. C. Liu, L. A. Giannuzzi, and J. G. Morris, “Grain structure of thin electrodeposited and rolled copper foils,” Materials Characterization, vol. 53, no. 5, pp. 335–360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Moravej, F. Prima, M. Fiset, and D. Mantovani, “Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship,” Acta Biomaterialia, vol. 6, no. 5, pp. 1726–1735, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. J. A. Grogan, B. J. O'Brien, S. B. Leen, and P. E. McHugh, “A corrosion model for bioabsorbable metallic stents,” Acta Biomaterialia, vol. 7, no. 9, pp. 3523–3533, 2011. View at Publisher · View at Google Scholar · View at Scopus