About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 138719, 7 pages
http://dx.doi.org/10.1155/2013/138719
Research Article

Alpha-Lipoic Acid Attenuates Renal Injury in Rats with Obstructive Nephropathy

1Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
2Clinical Biochemistry and Movement Sciences Research Group, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
3Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand

Received 24 June 2013; Accepted 2 September 2013

Academic Editor: Christian Schwentner

Copyright © 2013 Orawan Wongmekiat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. T. Grande, F. Pérez-Barriocanal, and J. M. Lápez-Novoa, “Role of inflammation in tbulo-interstitial damage associated to obstructive nephropathy,” Journal of Inflammation, vol. 7, article 19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Manucha, “Biochemical-molecular markers in unilateral ureteral obstruction,” Biocell, vol. 31, no. 1, pp. 1–12, 2007. View at Scopus
  3. W. Chan, R. J. Krieg Jr., K. Ward, F. Santos Jr., K.-C. Lin, and J. C. M. Chan, “Progression after release of obstructive nephropathy,” Pediatric Nephrology, vol. 16, no. 3, pp. 238–244, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Dendooven, D. A. Ishola Jr., T. Q. Nguyen et al., “Oxidative stress in obstructive nephropathy,” International Journal of Experimental Pathology, vol. 92, no. 3, pp. 202–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Zecher, C. Guichard, M. J. Velásquez, G. Figueroa, and R. Rodrigo, “Implications of oxidative stress in the pathophysiology of obstructive uropathy,” Urological Research, vol. 37, no. 1, pp. 19–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Goŗca, H. Huk-Kolega, A. Piechota, P. Kleniewska, E. Ciejka, and B. Skibska, “Lipoic acid—biological activity and therapeutic potential,” Pharmacological Reports, vol. 63, no. 4, pp. 849–858, 2011. View at Scopus
  7. A. O. Abdel-Zaher, R. H. Abdel-Hady, M. M. Mahmoud, and M. M. Y. Farrag, “The potential protective role of alpha-lipoic acid against acetaminophen-induced hepatic and renal damage,” Toxicology, vol. 243, no. 3, pp. 261–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Bilska and L. Włodek, “Lipoic acid—the drug of the future?” Pharmacological Reports, vol. 57, no. 5, pp. 570–577, 2005. View at Scopus
  9. U. Singh and I. Jialal, “Alpha-lipoic acid supplementation and diabetes,” Nutrition Reviews, vol. 66, no. 11, pp. 646–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. R. Smith, S. V. Shenvi, M. Widlansky, J. H. Suh, and T. M. Hagen, “Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress,” Current Medicinal Chemistry, vol. 11, no. 9, pp. 1135–1146, 2004. View at Scopus
  11. G. Amudha, A. Josephine, V. Sudhahar, and P. Varalakshmi, “Protective effect of lipoic acid on oxidative and peroxidative damage in cyclosporine A-induced renal toxicity,” International Immunopharmacology, vol. 7, no. 11, pp. 1442–1449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. P. Kang, D. H. Kim, Y. J. Jung et al., “Alpha-lipoic acid attenuates cisplatin-induced acute kidney injury in mice by suppressing renal inflammation,” Nephrology Dialysis Transplantation, vol. 24, no. 10, pp. 3012–3020, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Ö. Şehirli, E. Şener, Ş. Çetinel, M. Yüksel, N. Gedik, and G. Şener, “α-lipoic acid protects against renal ischaemia-reperfusion injury in rats,” Clinical and Experimental Pharmacology and Physiology, vol. 35, no. 3, pp. 249–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. D. R. Cremer, R. Rabeler, A. Roberts, and B. Lynch, “Long-term safety of α-lipoic acid (ALA) consumption: a 2-year study,” Regulatory Toxicology and Pharmacology, vol. 46, no. 3, pp. 193–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Scopus
  16. E. Beutler, “Reduced glutathione,” in Red Blood Cell Metabolism, E. Beutler, Ed., vol. 83, pp. 112–114, Grunne and Stratton, New York, NY, USA, 1975.
  17. S. Demirbilek, M. H. Emre, E. N. Aydin et al., “Sulfasalazine reduces inflammatory renal injury in unilateral ureteral obstruction,” Pediatric Nephrology, vol. 22, no. 6, pp. 804–812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R.-M. Liu and K. A. Gaston Pravia, “Oxidative stress and glutathione in TGF-β-mediated fibrogenesis,” Free Radical Biology and Medicine, vol. 48, no. 1, pp. 1–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Yanagita, “Inhibitors/antagonists of TGF-beta system in kidney fibrosis,” Nephrology Dialysis Transplantation, vol. 27, no. 10, pp. 3686–3691, 2012.
  20. X.-S. Xie, M. Yang, H.-C. Liu et al., “Influence of ginsenoside Rg1, a panaxatriol saponin from Panax notoginseng, on renal fibrosis in rats with unilateral ureteral obstruction,” Journal of Zhejiang University B, vol. 9, no. 11, pp. 885–894, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. R. L. Chevalier, M. S. Forbes, and B. A. Thornhill, “Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy,” Kidney International, vol. 75, no. 11, pp. 1145–1152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Akin, S. Demirbilek, S. Ay et al., “Attenuation of ureteral obstruction-induced renal injury by polyenylphosphatidylcholine,” International Journal of Urology, vol. 14, no. 4, pp. 350–356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. T. S. Johnson, M. Griffin, G. L. Thomas et al., “The role of transglutaminase in the rat subtotal nephrectomy model of renal fibrosis,” Journal of Clinical Investigation, vol. 99, no. 12, pp. 2950–2960, 1997. View at Scopus
  24. Z. Ying, T. Kampfrath, Q. Sun, S. Parthasarathy, and S. Rajagopalan, “Evidence that α-lipoic acid inhibits NF-κB activation independent of its antioxidant function,” Inflammation Research, vol. 60, no. 3, pp. 219–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Chertin, U. Rolle, A. Farkas, and P. Puri, “The role of nitric oxide in reflux nephropathy,” Pediatric Surgery International, vol. 18, no. 7, pp. 630–634, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Manucha, L. Oliveros, L. Carrizo, A. Seltzer, and P. Vallés, “Losartan modulation on NOS isoforms and COX-2 expression in early renal fibrogenesis in unilateral obstruction,” Kidney International, vol. 65, no. 6, pp. 2091–2107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Yamada, M. Kaibori, H. Tanaka et al., “α-lipoic acid prevents the induction of iNOS gene expression through destabilization of its mrna in proinflammatory cytokine-stimulated hepatocytes,” Digestive Diseases and Sciences, pp. 1–9, 2012. View at Publisher · View at Google Scholar · View at Scopus