About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 139674, 9 pages
http://dx.doi.org/10.1155/2013/139674
Research Article

Gamma Knife Surgery as Monotherapy with Clinically Relevant Doses Prolongs Survival in a Human GBM Xenograft Model

1Department of Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
2Institute of Surgical Sciences, Haukeland University Hospital, 5021 Bergen, Norway
3Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, 5021 Bergen, Norway
4Department of Neurosurgery, Karolinska University Hospital, 171 76 Stockholm, Sweden
5Department of Oncology and Medical Physics, Haukeland University Hospital, 5021 Bergen, Norway
6Department of Biological and Medical Psychology, University of Bergen, 5021 Bergen, Norway
7Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, 5021 Bergen, Norway
8Brain Tumor Immunology & Therapy Group, Department of Biomedicine, University of Bergen, 5021 Bergen, Norway

Received 20 April 2013; Revised 17 September 2013; Accepted 19 September 2013

Academic Editor: Li Jiao

Copyright © 2013 Bente Sandvei Skeie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Object. Gamma knife surgery (GKS) may be used for recurring glioblastomas (GBMs). However, patients have then usually undergone multimodal treatment, which makes it difficult to specifically validate GKS independent of established treatments. Thus, we developed an experimental brain tumor model to assess the efficacy and radiotoxicity associated with GKS. Methods. GBM xenografts were implanted intracerebrally in nude rats, and engraftment was confirmed with MRI. The rats were allocated to GKS, with margin doses of 12 Gy or 18 Gy, or to no treatment. Survival time was recorded, tumor sections were examined, and radiotoxicity was evaluated in a behavioral open field test. Results. In the first series, survival from the time of implantation was 96 days in treated rats and 72 days in controls ( ). In a second experiment, survival was 72 days in the treatment group versus 54 days in controls ( ). Polynuclear macrophages and fibrosis was seen in groups subjected to GKS. Untreated rats with GBM xenografts displayed less mobility than GKS-treated animals in the open field test 4 weeks after treatment ( ). Conclusion. GKS administered with clinically relevant doses prolongs survival in rats harboring GBM xenografts, and the associated toxicity is mild.