About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 141427, 7 pages
http://dx.doi.org/10.1155/2013/141427
Review Article

Characterization and In Vivo Biological Performance of Biosilicate

1Department of Biosciences, Federal University of São Paulo, Avenida Ana Costa 95, 11060-001 Santos, SP, Brazil
2Vitreous Materials Laboratory, Department of Materials Engineering, Federal University of São Carlos, Rodovia Washington Luís (SP-310), Km 235, 13565-905 São Carlos, SP, Brazil
3Department of Physiotherapy, Federal University of São Carlos, Rodovia Washington Luís (SP-310), Km 235, 13565-905 São Carlos, SP, Brazil

Received 6 May 2013; Accepted 18 July 2013

Academic Editor: Stanley J. Stachelek

Copyright © 2013 Ana Claudia M. Renno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, “Bone substitutes: an update,” Injury, vol. 36, pp. S20–S27, 2005. View at Scopus
  2. A. S. Greenwald, S. D. Boden, V. M. Goldberg, Y. Khan, C. T. Laurencin, and R. N. Rosier, “Bone-graft substitutes: facts, fictions, and applications,” Journal of Bone and Joint Surgery A, vol. 83, pp. S98–S103, 2001. View at Scopus
  3. J. R. Jones, E. Gentleman, and J. Polak, “Bioactive glass scaffolds for bone regeneration,” Elements, vol. 3, no. 6, pp. 393–399, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. L. Hench, “Bioceramics: from concept to clinics,” Journal of the American Ceramic Society, vol. 74, pp. 1487–1510, 1991.
  5. L. L. Hench and J. M. Polak, “Third-generation biomedical materials,” Science, vol. 295, no. 5557, pp. 1014–1017, 2002. View at Scopus
  6. I. D. Xynos, A. J. Edgar, L. D. Buttery, L. L. Hench, and J. M. Polak, “Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution,” Journal of Biomedical Materials Research, vol. 55, pp. 151–157, 2001.
  7. A. El-Ghannam, P. Ducheyne, and I. M. Shapiro, “Effect of serum proteins on osteoblast adhesion to surface-modified bioactive glass and hydroxyapatite,” Journal of Orthopaedic Research, vol. 17, no. 3, pp. 340–345, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. M. T. Souza, Development of highly bioactive glass fiber meshes. Dissertation: Post-Graduation Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil, 2011.
  9. O. Peitl, E. D. Zanotto, F. C. Serbena, and L. L. Hench, “Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics,” Acta Biomaterialia, vol. 8, no. 1, pp. 321–332, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kokubo, “Bioactive glass ceramics: properties and applications,” Biomaterials, vol. 12, no. 2, pp. 155–163, 1991. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Ravagnani, O. Peitl, E. D. Zanotto, E. H. G. Lara, and H. Panzeri, “Process and compositions for preparing particulate, bioactive or resorbable biosilicates for use in the treatment of oral aliments,” Classificação Internacional C03C10/00, INPI 03006441, Universidade Federal de São Carlos; Universidade de São Paulo, São Carlos, Brazil, 2004.
  12. M. Bohner and J. Lemaitre, “Can bioactivity be tested in vitro with SBF solution?” Biomaterials, vol. 30, no. 12, pp. 2175–2179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Li, Q. Yang, F. Zhang, and T. Kokubo, “The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layer in vitro,” Journal of Materials Science, vol. 3, no. 6, pp. 452–456, 1992. View at Publisher · View at Google Scholar · View at Scopus
  14. O. Peitl, G. La Torre, and L. L. Hench, “Effect of crystallization on apatite-layer formation of bioactive glass 45S5,” Journal of Biomedical Materials Research, vol. 30, pp. 509–514, 1996.
  15. O. Peitl, E. Dutra Zanotto, and L. L. Hench, “Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics,” Journal of Non-Crystalline Solids, vol. 292, no. 1-3, pp. 115–126, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Tirapelli, H. Panzeri, R. G. Soares, O. Peitl, and E. D. Zanotto, “A novel bioactive glass-ceramic for treating dentin hypersensitivity,” Brazilian Oral Research, vol. 24, no. 4, pp. 381–387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C. H. G. Martins, T. C. Carvalho, M. G. M. Souza et al., “Assessment of antimicrobial effect of Biosilicate against anaerobic, microaerophilic and facultative anaerobic microorganisms,” Journal of Materials Science, vol. 22, no. 6, pp. 1439–1446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Zimmermann, U. Müller, and A. Wentzensen, “The value of laboratory and imaging studies in the evaluation of long-bone non-unions,” Injury, vol. 38, no. 2, pp. S33–S37, 2007. View at Scopus
  19. T. A. Einhorn, “The cell and molecular biology of fracture healing,” Clinical Orthopaedics and Related Research, no. 355, pp. S7–S21, 1998. View at Scopus
  20. O. Gauthier, R. Müller, D. von Stechow et al., “In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study,” Biomaterials, vol. 26, no. 27, pp. 5444–5453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Moura, L. N. Teixeira, C. Ravagnani et al., “In vitro osteogenesis on a highly bioactive glass-ceramic (Biosilicate),” Journal of Biomedical Materials Research, vol. 82, no. 3, pp. 545–557, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. C. M. Renno, P. A. McDonnell, M. C. Crovace, E. D. Zanotto, and L. Laakso, “Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on Biosilicate scaffolds,” Photomedicine and laser surgery, vol. 28, no. 1, pp. 131–133, 2010. View at Scopus
  23. R. N. Granito, A. C. Rennõ, C. Ravagnani et al., “In vivo biological performance of a novel highly bioactive glass-ceramic (Biosilicate): a biomechanical and histomorphometric study in rat tibial defects,” Journal of Biomedical Materials Research B, vol. 97, no. 1, pp. 139–147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. R. N. Granito, D. A. Ribeiro, A. C. M. Rennó et al., “Effects of biosilicate and bioglass 45S5 on tibial bone consolidation on rats: a biomechanical and a histological study,” Journal of Materials Science, vol. 20, no. 12, pp. 2521–2526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. V. M. Roriz, A. L. Rosa, O. Peitl, E. D. Zanotto, H. Panzeri, and P. T. De Oliveira, “Efficacy of a bioactive glass-ceramic (Biosilicate) in the maintenance of alveolar ridges and in osseointegration of titanium implants,” Clinical Oral Implants Research, vol. 21, no. 2, pp. 148–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. R. Azenha, O. Peitl, and V. M. Barros, “Bone response to biosilicates with different crystal phases,” Brazilian Dental Journal, vol. 21, no. 5, pp. 383–389, 2010. View at Scopus
  27. P. Oliveira, D. A. Ribeiro, E. F. Pipi, P. Driusso, N. A. Parizotto, and A. C. M. Renno, “Low level laser therapy does not modulate the outcomes of a highly bioactive glass-ceramic (Biosilicate) on bone consolidation in rats,” Journal of Materials Science, vol. 21, no. 4, pp. 1379–1384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. P. S. Bossini, A. C. Muniz Renno, D. A. Ribeiro et al., “Biosilicate and low-level laser therapy improve bone repair in osteoporotic rats,” Journal of Tissue Engineering and Regenerative Medicine, vol. 5, no. 3, pp. 229–237, 2011. View at Publisher · View at Google Scholar · View at Scopus