About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 143742, 9 pages
http://dx.doi.org/10.1155/2013/143742
Research Article

Lithium Chloride Enhances Cathepsin H Expression and BMP-4 Degradation in C3H10T1/2 Cells

Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan

Received 10 July 2013; Accepted 26 September 2013

Academic Editor: Sue-Hwa Lin

Copyright © 2013 Koshi N. Kishimoto and Eiji Itoi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. H. Reddi, “Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials,” Tissue Engineering, vol. 6, no. 4, pp. 351–359, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Kolpakova and B. R. Olsen, “Wnt/β-catenin—a canonical tale of cell-fate choice in the vertebrate skeleton,” Developmental Cell, vol. 8, no. 5, pp. 626–627, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. T. F. Day, X. Guo, L. Garrett-Beal, and Y. Yang, “Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis,” Developmental Cell, vol. 8, no. 5, pp. 739–750, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. T. P. Hill, D. Später, M. M. Taketo, W. Birchmeier, and C. Hartmann, “Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes,” Developmental Cell, vol. 8, no. 5, pp. 727–738, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. K. N. Kishimoto, Y. Y. Watanabe, H. H. Nakamura, and S. S. Kokubun, “Ectopic bone formation by electroporatic transfer of bone morphogenetic protein-4 gene,” Bone, vol. 31, no. 2, pp. 340–347, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. K. N. Kishimoto and Y. Watanabe, “Bone formation by BMP gene transfection,” in Electroporation and Sonoporation in Developmental Biology, H. Nakamura, Ed., pp. 263–270, Springer, Berlin, Germany, 2009.
  7. P. S. Klein and D. A. Melton, “A molecular mechanism for the effect of lithium on development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 16, pp. 8455–8459, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Turk, V. Stoka, O. Vasiljeva et al., “Cysteine cathepsins: from structure, function and regulation to new frontiers,” Biochimica et Biophysica Acta, vol. 1824, no. 1, pp. 68–88, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. A. G. Costa, N. E. Cusano, B. C. Silva, S. Cremers, and J. P. Bilezikian, “Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis,” Nature Reviews Rheumatology, vol. 7, no. 8, pp. 447–456, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Kuester, H. Lippert, A. Roessner, and S. Krueger, “The cathepsin family and their role in colorectal cancer,” Pathology Research and Practice, vol. 204, no. 7, pp. 491–500, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Sulpizio, N. Franceschini, A. Piattelli, P. di Sebastiano, P. Innocenti, and F. Selvaggi, “Cathepsins and pancreatic cancer: the 2012 update,” Pancreatology, vol. 12, pp. 395–401, 2012. View at Publisher · View at Google Scholar
  12. Z. Jevnikar, M. Rojnik, P. Jamnik, B. Doljak, U. P. Fonovic, and J. Kos, “Cathepsin H mediates the processing of talin and regulates migration of prostate cancer cells,” Journal of Biological Chemistry, vol. 288, pp. 2201–2209, 2013. View at Publisher · View at Google Scholar
  13. M. Sivaparvathi, R. Sawaya, Z. L. Gokaslan, S. K. Chintala, and J. S. Rao, “Expression and the role of cathepsin H in human glioma progression and invasion,” Cancer Letters, vol. 104, no. 1, pp. 121–126, 1996. View at Publisher · View at Google Scholar
  14. E. Frohlich, B. Schlagenhauff, M. Mohrle, E. Weber, C. Klessen, and G. Rassner, “Activity, expression, and transcription rate of the cathepsins B, D, H, and L in cutaneous malignant melanoma,” Cancer, vol. 91, pp. 972–982, 2001.
  15. T. Ueno, S. Linder, C.-L. Na, W. R. Rice, J. Johansson, and T. E. Weaver, “Processing of pulmonary surfactant protein B by napsin and cathepsin H,” Journal of Biological Chemistry, vol. 279, no. 16, pp. 16178–16184, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Lü, J. Qian, D. Keppler, and W. V. Cardoso, “Cathespin H is an Fgf10 target involved in Bmp4 degradation during lung branching morphogenesis,” Journal of Biological Chemistry, vol. 282, no. 30, pp. 22176–22184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Jones, K. M. Lyons, and B. L. M. Hogan, “Involvement of Bone Morphogenetic Protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse,” Development, vol. 111, no. 2, pp. 531–542, 1991. View at Scopus
  18. J.-I. Miyazaki, S. Takaki, K. Araki et al., “Expression vector system based on the chicken β-actin promoter directs efficient production of interleukin-5,” Gene, vol. 79, no. 2, pp. 269–277, 1989. View at Scopus
  19. P. B. Ahrens, M. Solursh, and R. S. Reiter, “Stage-related capacity for limb chondrogenesis in cell culture,” Developmental Biology, vol. 60, no. 1, pp. 69–82, 1977. View at Scopus
  20. M. J. B. van den Hoff, F. F. M. Moorman, and W. H. Lamers, “Electroporation in ‘intracellular’ buffer increases cell survival,” Nucleic Acids Research, vol. 20, no. 11, article 2902, 1992. View at Scopus
  21. V. Turk, B. Turk, and D. Turk, “Lysosomal cysteine proteases: facts and opportunities,” The EMBO Journal, vol. 20, no. 17, pp. 4629–4633, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Ishihara, K. M. Shields, A. S. Litsky et al., “Osteogenic gene regulation and relative acceleration of healing by adenoviral-mediated transfer of human BMP-2 or -6 in equine osteotomy and ostectomy models,” Journal of Orthopaedic Research, vol. 26, no. 6, pp. 764–771, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. D. B. Constam and E. J. Robertson, “Regulation of bone morphogenetic protein activity by pro domains and proprotein convertases,” Journal of Cell Biology, vol. 144, no. 1, pp. 139–149, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Cui, F. Jean, G. Thomas, and J. L. Christian, “BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development,” The EMBO Journal, vol. 17, no. 16, pp. 4735–4743, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. L. B. Zimmerman, J. M. de Jesús-Escobar, and R. M. Harland, “The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4,” Cell, vol. 86, no. 4, pp. 599–606, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Gazzerro, V. Gangji, and E. Canalis, “Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts,” The Journal of Clinical Investigation, vol. 102, no. 12, pp. 2106–2114, 1998. View at Scopus
  27. J. Sun, F.-F. Zhuang, J. E. Mullersman et al., “BMP4 activation and secretion are negatively regulated by an intracellular Gremlin-BMP4 interaction,” Journal of Biological Chemistry, vol. 281, no. 39, pp. 29349–29356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Tardif, D. Hum, J.-P. Pelletier, C. Boileau, P. Ranger, and J. Martel-Pelletier, “Differential gene expression and regulation of the bone morphogenetic protein antagonists follistatin and gremlin in normal and osteoarthritic human chondrocytes and synovial fibroblasts,” Arthritis and Rheumatism, vol. 50, no. 8, pp. 2521–2530, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Fischer, G. Boland, and R. S. Tuan, “Wnt signaling during BMP-2 stimulation of mesenchymal chondrogenesis,” Journal of Cellular Biochemistry, vol. 84, no. 4, pp. 816–831, 2002. View at Publisher · View at Google Scholar · View at Scopus