About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 149120, 11 pages
http://dx.doi.org/10.1155/2013/149120
Research Article

The Uptake Mechanism of Cd(II), Cr(VI), Cu(II), Pb(II), and Zn(II) by Mycelia and Fruiting Bodies of Galerina vittiformis

Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025, India

Received 15 August 2013; Revised 21 October 2013; Accepted 22 October 2013

Academic Editor: Kannan Pakshirajan

Copyright © 2013 Dilna Damodaran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. V. Avery, “Metal toxicity in yeasts and the role of oxidative stress,” Advances in Applied Microbiology, vol. 49, pp. 111–142, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. L. Schnoor, “Phytoremediation: ground-water remediation technologies,” Analysis Centre Technology Evaluation Report TE 98-1, William Pitt Way, Pittsburgh, PA, USA, 1997.
  3. J. S. Bardan, O. Radziah, S. A. Wahid, A. Husin, and F. S. Zadeh, “Column bioleaching of arsenic and heavy metals from gold mine tailings by Aspergillus fumigates,” Clean—Soil, Air, Water, vol. 40, no. 6, pp. 607–614, 2012. View at Publisher · View at Google Scholar
  4. F. M. Morsy, S. H. A. Hassan, and M. Koutb, “Biosorption of Cd(II) and Zn(II) by Nostoc commune isotherm and kinetics studies,” Clean—Soil, Air, Water, vol. 39, no. 7, pp. 680–687, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Mishra, C. Balomajumder, and V. K. Agarwal, “Zn(II) ion biosorption onto surface of eucalyptus leaf biomass: isotherm, kinetic, and mechanistic modeling,” Clean—Soil, Air, Water, vol. 38, no. 11, pp. 1062–1073, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Volesky and S. Holan, “Biosorption of heavy metals,” Biotechnology Progress, vol. 11, pp. 235–250, 1995. View at Scopus
  7. R. Moore, W. D. Clark, and D. Vodopich, Botany, WCB/McGraw-Hill, Dubuque, Iowa, USA, 3rd edition, 1998.
  8. V. Hornburg, G. Welp, and G. Brummer, “Verhalten von schwermetallen in boden,” in Extraktion Mobiler Schwermetalle Mittels CaCl2 und NH4NO3. Z. Pflanzenernaehr, vol. 158, pp. 137–145, Bodenk, Springer, Berlin,Germany, 2nd edition, 1995.
  9. K. J. Reddy, L. Wang, and S. P. Gloss, “Solubility and mobility of copper, zinc and lead in acidic environments,” Plant and Soil, vol. 171, no. 1, pp. 53–58, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. U. Schmidt, “Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals,” Journal of Environmental Quality, vol. 32, no. 6, pp. 1939–1954, 2003. View at Scopus
  11. C. Bliefert, Umweltchemie, Wiley-VCH, Weinheim, Germany, 1994.
  12. Z. Li and L. M. Shuman, “Heavy metal movement in metal-contaminated soil profiles,” Journal of Soil Science, vol. 161, no. 10, pp. 656–666, 1996. View at Scopus
  13. K. Pakshirajan, A. N. Worku, M. A. Acheampong, H. J. Lubberding, and P. N. Lens, “Cr(III) and Cr(VI) removal from aqueous solutions by cheaply available fruit waste and algal biomass,” Applied Biochemistry and Biotechnology, vol. 170, no. 3, pp. 498–513, 2013. View at Publisher · View at Google Scholar
  14. P. Oei, Mushroom Cultivation with Special Emphasis on Appropriate Techniques for Developing Countries, Tool, Amsterdam, The Netherlands, 1st edition, 1996.
  15. S. Srivastava and I. S. Thakur, “Biosorption potency of Aspergillus niger for removal of chromium (VI),” Journal of Current Microbiology, vol. 53, no. 3, pp. 232–237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Turkekul, M. Elmastas, and M. Tuzen, “Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey,” Food Chemistry, vol. 84, no. 3, pp. 389–392, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Mitra, Studies on the uptake of heavy metal pollutants by edible mushrooms and its effects on their growth productivity and mammalian system [Ph.D. thesis], University of Calcutta, Kolkata, India, 1994.
  18. A. Demirbaş, “Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region,” Food Chemistry, vol. 75, no. 4, pp. 453–457, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Yilmaz, I. Mustafa, and M. Melek, “Heavy metal levels in some macro fungi,” Turkish Journal of Botany, vol. 27, no. 1, pp. 45–56, 2003. View at Scopus
  20. F. Zhu, L. Qu, W. Fan, M. Qiao, H. Hao, and X. Wang, “Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China,” Environmental Monitoring and Assessment, vol. 179, no. 1–4, pp. 191–199, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Basile, S. Sorbo, G. Aprile, B. Conte, and C. R. Castaldo, “Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen,” Environmental Pollution, vol. 151, no. 2, pp. 401–407, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Ge, D. Zamri, H. Mineyama, and M. Valix, “Bioaccumulation of heavy metals on adapted Aspergillus foetidus,” Adsorption, vol. 17, no. 5, pp. 901–910, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. B. N. Ita, J. P. Essien, and G. A. Ebong, “Heavy metal levels in fruiting bodies of edible and non-edible mushrooms from the Niger Delta region of Nigeria,” Enzyme and Microbial Technology, vol. 32, pp. 78–89, 2006.
  24. O. Isildak, I. Turkekul, M. Elmastas, and H. Y. Aboul-Enein, “Bioaccumulation of heavy metals in some wild-grown edible mushrooms,” Analytical Letters, vol. 40, no. 6, pp. 1099–1116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Vimala and N. Das, “Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study,” Journal of Hazardous Materials, vol. 168, no. 1, pp. 376–382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Çayir, M. Coşkun, and M. Coşkun, “The heavy metal content of wild edible mushroom samples collected in Canakkale Province, Turkey,” Biological Trace Element Research, vol. 134, no. 2, pp. 212–219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Konuk, A. Afyon, and D. Yaǧiz, “Minor element and heavy metal contents of wild growing and edible mushrooms from Western Black Sea region of Turkey,” Fresenius Environmental Bulletin, vol. 16, pp. 1359–1362, 2007. View at Scopus
  28. S. J. Haswell, Atomic Absorption Spectrometry: Theory, Design and Applications, Elsevier, Amsterdam, The Netherlands, 1991.
  29. G. W. Susan, A. E. Kaminsky, and S. Tanya, “High spatial resolution surface imaging and analysis of fungal cells using SEM and AFM,” Micron, vol. 39, no. 4, pp. 349–366, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Pakshirajan and T. Swaminathan, “Biosorption of lead, copper, and cadmium by Phanerochaete chrysosporium in ternary metal mixtures: statistical analysis of individual and interaction effects,” Applied Biochemistry and Biotechnology, vol. 158, no. 2, pp. 457–469, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. C. González, R. C. Gonzalez, S. F. Wright, and K. A. Nichols, “The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements,” Environmental Pollution, vol. 130, no. 3, pp. 317–323, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Thomet, E. Vogel, and U. Krahenbuhl, “The uptake of cadmium and zinc by mycelia and their accumulation in mycelia and fruiting bodies of edible mushrooms,” European Food Research and Technology, vol. 209, no. 5, pp. 317–324, 1999. View at Scopus
  33. X.-H. Chen, H.-B. Zhou, and G.-Z. Qiu, “Analysis of several heavy metals in wild edible mushrooms from regions of China,” Bulletin of Environmental Contamination and Toxicology, vol. 83, no. 2, pp. 280–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Chen, S. L. Luo, X. Xiao et al., “Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils,” Applied Soil Ecology, vol. 46, no. 3, pp. 383–389, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. D.-L. Huang, G.-M. Zeng, X.-Y. Jiang et al., “Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw,” Journal of Hazardous Materials, vol. 134, no. 1–3, pp. 268–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. D.-L. Huang, G.-M. Zeng, C.-L. Feng et al., “Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity,” Environmental Science & Technology, vol. 42, no. 13, pp. 4946–4951, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. P. A. Wuyep, A. G. Chuma, S. Awodi, and A. J. Nok, “Biosorption of Cr, Mn, Fe, Ni, Cu and Pb metals from petroleum refinery effluent by calcium alginate immobilized mycelia of Polyporus squamosus,” Scientific Research and Essay, vol. 2, pp. 217–221, 2007.
  38. Z.-X. Niu, L.-N. Sun, T.-H. Sun, Y.-S. Li, and H. Wang, “Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture,” Journal of Environmental Sciences A, vol. 19, no. 8, pp. 961–967, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Demirbaş, “Metal ion uptake by mushrooms from natural and artificially enriched soils,” Food Chemistry, vol. 78, no. 1, pp. 89–93, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Joho, M. Inouhe, H. Tohoyama, and T. Murayama, “Nickel resistance mechanisms in yeasts and other fungi,” Journal of Industrial Microbiology, vol. 14, no. 2, pp. 164–168, 1995. View at Scopus
  41. J. L. Hall, “Cellular mechanism of heavy metal detoxification and tolerance: a review article,” Journal of Experimental Botany, vol. 53, pp. 1–11, 2002. View at Scopus
  42. M. Inouhe, M. Sumiyoshi, H. Tohoyama, and M. Joho, “Resistance to cadmium ions and formation of a cadmium-binding complex in various wild-type yeasts,” Plant and Cell Physiology, vol. 37, no. 3, pp. 341–346, 1996. View at Scopus
  43. R. K. Mehra, E. B. Tarbet, W. R. Gray, and D. R. Winge, “Metalspecic synthesis of 2 metallthioneins and g-glutamyl-transferase peptides in Candida glabrata,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, pp. 8815–8819, 1988.
  44. K. Münger and K. Lerch, “Copper metallothionein from the fungus Agaricus bisporus chemical and spectroscopic properties,” Biochemistry, vol. 24, no. 24, pp. 6751–6756, 1985. View at Scopus
  45. K. Lerch, “Copper metallothionein, a copper-binding protein from Neurospora crassa,” Nature, vol. 284, pp. 368–370, 1980. View at Scopus
  46. D. Cánovas, R. Vooijs, H. Schat, and V. de Lorenzo, “The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic,” The Journal of Biological Chemistry, vol. 279, no. 49, pp. 51234–51240, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Paraszkiewicz, P. Bernat, M. Naliwajski, and J. Długoński, “Lipid peroxidation in the fungus Curvularia lunata exposed to nickel,” Archives of Microbiology, vol. 192, no. 2, pp. 135–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Courbot, L. Diez, R. Ruotolo, M. Chalot, and P. Leroy, “Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus,” Applied and Environmental Microbiology, vol. 70, no. 12, pp. 7413–7417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Ivanova, T. Toncheva-Panova, G. Chernev, and B. Samuneva, “Effect of Ag2+, Cu2+ and Zn2+ containing hybrid nano matrixes on the green algae Chlorella keissleri,” Journal of Applied Plant Physiolology, vol. 34, pp. 339–348, 2008.
  50. K. Paraszkiewicz, P. Bernat, M. Naliwajski, and J. Długoński, “Lipid peroxidation in the fungus Curvularia lunata exposed to nickel,” Archives of Microbiology, vol. 192, no. 2, pp. 135–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. W. K. Surewicz, H. H. Mantsch, and D. Chapman, “Determination of protein secondary structure by Fourier transform infrared spectroscopy,” Biochemistry, vol. 32, no. 2, pp. 389–394, 1993. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Kalač and L. Svoboda, “A review of trace element concentrations in edible mushrooms,” Food Chemistry, vol. 69, no. 3, pp. 273–281, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Caliskan, “Germin, an oxalate oxidase, has a function in many aspects of plant life,” Turkish Journal of Biology, vol. 24, pp. 717–724, 2000.
  54. W. Qian and S. Krimm, “Vibrational analysis of glutathione,” Biopolymers, vol. 34, no. 10, pp. 1377–1394, 1994. View at Publisher · View at Google Scholar · View at Scopus
  55. T.-H. Yang, A. Dong, J. Meyer, O. L. Johnson, J. L. Cleland, and J. F. Carpenter, “Use of infrared spectroscopy to assess secondary structure of human growth hormone within biodegrable microspheres,” Journal of Pharmaceutical Sciences, vol. 88, no. 2, pp. 161–165, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. Y.-B. Shi, J.-L. Fang, X.-Y. Liu, L. Du, and W.-X. Tang, “Fourier transform IR and fourier transform raman spectroscopy studies of metallothionein-III: amide I band assignments and secondary structural comparison with metallothioneins-I and -II,” Biopolymers, vol. 65, no. 2, pp. 81–88, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Camera, M. Rinaldi, S. Briganti, M. Picardo, and S. Fanali, “Simultaneous determination of reduced and oxidized glutathione in peripheral blood mononuclear cells by liquid chromatography-electrospray mass spectrometry,” Journal of Chromatography B, vol. 757, no. 1, pp. 69–78, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. S. A. Odoemelam, C. U. Iroh, and J. C. Igwe, “Copper (II), cadmium (II) and lead (II) adsorption kinetics from aqueous metal solutions using chemically modified and unmodified cocoa pod husk (Theobroma cacao) waste biomass,” Research Journal of Applied Sciences, vol. 6, no. 1, pp. 44–52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Robina, N. Levequeb, C. C. Masuyera, and P. Humbertc, “LC-MS determination of oxidized and reduced glutathione in human dermis: a micro dialysis study,” Journal of Chromatography B, vol. 879, no. 30, pp. 3599–3606, 2011. View at Publisher · View at Google Scholar
  60. E. Grill, E. L. Winnacker, and M. H. Zenk, “Phytochelatins, a class of heavy metal complexing peptidesof higher plants,” Science, vol. 230, pp. 674–676, 1985.
  61. W. Gekeler, E. Grill, E.-L. Winnacker, and M. H. Zenk, “Algae sequester heavy metals via synthesis of phytochelatin complexes,” Archives of Microbiology, vol. 150, no. 2, pp. 197–202, 1988. View at Publisher · View at Google Scholar · View at Scopus
  62. V. Liedschulte, A. Wachter, A. Zhigang, and T. Rausch, “Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation,” Plant Biotechnology Journal, vol. 8, no. 7, pp. 807–820, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. S. S. Gill and N. Tuteja, “Cadmium stress tolerance in crop plants: probing the role of sulfur,” Plant Signaling and Behavior, vol. 6, no. 2, pp. 215–222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. F. F. Nocito, C. Lancilli, B. Crema, P. Fourcroy, J.-C. Davidian, and G. A. Sacchi, “Heavy metal stress and sulfate uptake in Maize roots,” Plant Physiology, vol. 141, no. 3, pp. 1138–1148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. W. B. Ammar, C. Mediouni, B. Tray, M. H. Ghorbel, and F. Jemal, “Glutathione and phytochelatin contents in tomato plants exposed to cadmium,” Biologia Plantarum, vol. 52, no. 2, pp. 314–320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. S. K. Yadav, “Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants,” South African Journal of Botany, vol. 76, no. 2, pp. 167–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. B. V. Tangahu, S. R. Sheikh Abdullah, H. Basri, M. Idris, N. Anuar, and M. Mukhlisin, “A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation,” International Journal of Chemical Engineering, vol. 2011, Article ID 939161, 31 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. R. England and K. J. Wilkinson, “Determination of phytochelatins in algal samples using LC-MS,” International Journal of Environmental Analytical Chemistry, vol. 91, no. 2, pp. 185–196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Scheidegger, M. J. F. Suter, R. Behra, and L. Sigg, “Characterization of lead-phytochelatins complexes by nano electro spray ionization mass spectrometry,” Frontiers in Micorbiology, vol. 3, no. 41, pp. 1–7, 2012.
  70. S. Volland, D. Schaumloffel, D. Dobritzsch, G. J. Krauss, and U. L. Meind, “Identification of phytochelatins in the cadmium-stressed conjugating green alga Micrasterias denticulate,” Chemosphere, vol. 91, pp. 448–454, 2013.