About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 150901, 7 pages
http://dx.doi.org/10.1155/2013/150901
Review Article

Use of Insulin to Increase Epiblast Cell Number: Towards a New Approach for Improving ESC Isolation from Human Embryos

1Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, University of Adelaide, Medical School South, Level 3, Frome Road, Adelaide, SA 5005, Australia
2Centre for Stem Cell Research, University of Adelaide, Medical School South, Level 3, Frome Road, Adelaide, SA 5005, Australia
3Repromed, 180 Fullarton Road, Dulwich, SA 5065, Australia

Received 27 October 2012; Accepted 7 January 2013

Academic Editor: Deepa Bhartiya

Copyright © 2013 Jared M. Campbell et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Campbell, M. Mitchell, M. B. Nottle, and M. Lane, “Development of a mouse model for studying the effect of embryo culture on embryonic stem cell derivation,” Stem Cells and Development, vol. 20, no. 9, pp. 1577–1586, 2011.
  2. J. Nichols, J. Silva, M. Roode, and A. Smith, “Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo,” Development, vol. 136, no. 19, pp. 3215–3222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Batlle-Morera, A. Smith, and J. Nichols, “Parameters influencing derivation of embryonic stem cells from murine embryos,” Genesis, vol. 46, no. 12, pp. 758–767, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Campbell, M. Lane, I. Vassiliev, and M. Nottle, “Epiblast cell number and primary embryonic stem cell colony generation are increased by culture of cleavage stage embryos in insulin,” The Journal of Reproduction and Development, 2012. View at Publisher · View at Google Scholar
  5. K. Hardy and S. Spanos, “Growth factor expression and function in the human and mouse preimplantation embryo,” Journal of Endocrinology, vol. 172, no. 2, pp. 221–236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Karagenc, M. Lane, and D. K. Gardner, “Granulocyte-macrophage colony-stimulating factor stimulates mouse blastocyst inner cell mass development only when media lack human serum albumin,” Reproductive BioMedicine Online, vol. 10, no. 4, pp. 511–518, 2005. View at Scopus
  7. J. M. Campbell, M. Nottle, I. Vassiliev, M. Mitchell, and M. Lane, “Insulin increases epiblast cell number of in vitro cultured mouse embryos via the PI3K/GSK3/p53 pathway,” Stem Cells and Development, vol. 21, no. 13, pp. 2430–2441, 2012. View at Publisher · View at Google Scholar
  8. M. Mitalipova, J. Calhoun, S. Shin et al., “Human embryonic stem cell lines derived from discarded embryos,” Stem Cells, vol. 21, no. 5, pp. 521–526, 2003. View at Scopus
  9. P. H. Lerou, A. Yabuuchi, H. Huo et al., “Human embryonic stem cell derivation from poor-quality embryos,” Nature Biotechnology, vol. 26, no. 2, pp. 212–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. A. Cowan, I. Klimanskaya, J. McMahon et al., “Derivation of embryonic stem-cell lines from human blastocysts,” The New England Journal of Medicine, vol. 350, no. 13, pp. 1353–1356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Giritharan, S. Talbi, A. Donjacour, F. Di Sebastiano, A. T. Dobson, and P. F. Rinaudo, “Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos,” Reproduction, vol. 134, no. 1, pp. 63–72, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. B. J. Bankowski, A. D. Lyerly, R. R. Faden, and E. E. Wallach, “The social implications of embryo cryopreservation,” Fertility and Sterility, vol. 84, no. 4, pp. 823–832, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. C. Klock, “Embryo disposition: the forgotten “child” of in vitro fertilization,” International Journal of Fertility and Women's Medicine, vol. 49, no. 1, pp. 19–23, 2004. View at Scopus
  14. D. K. Gardner, “Dissection of culture media for embryos: the most important and less important components and characteristics,” Reproduction, Fertility and Development, vol. 20, no. 1, pp. 9–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Lane and D. K. Gardner, “Embryo culture medium: which is the best?” Best Practice & Research. Clinical Obstetrics & Gynaecology, vol. 21, no. 1, pp. 83–100, 2006.
  16. H. Laverge, P. De Sutler, R. Desmet, J. Van der Elst, and M. Dhont, “Prospective randomized study comparing human serum albumin with fetal cord serum as protein supplement in culture medium for in-vitro fertilization,” Human Reproduction, vol. 12, no. 10, pp. 2263–2266, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. D. K. Gardner and M. Lane, “Towards a single embryo transfer,” Reproductive BioMedicine Online, vol. 6, no. 4, pp. 470–481, 2003. View at Scopus
  18. D. K. Gardner and M. Lane, “Culture of viable human blastocysts in defined sequential serum-free media,” Human Reproduction, vol. 13, no. 3, pp. 148–160, 1998. View at Scopus
  19. D. K. Gardner, “Blastocyst culture: toward single embryo transfers,” Human Fertility, vol. 3, no. 4, pp. 229–237, 2000. View at Scopus
  20. J. Van der Elst, E. Van Den Abbeel, M. Camus, J. Smitz, P. Devroey, and A. Van Steirteghem, “Long-term evaluation of implantation of fresh and cryopreserved human embryos following ovarian stimulation with buserelin acetate-human menopausal gonadotrophin (HMG) or clomiphene citrate-HMG,” Human Reproduction, vol. 11, no. 10, pp. 2097–2106, 1996. View at Scopus
  21. S. Oehninger, J. Mayer, and S. Muasher, “Impact of different clinical variables on pregnancy outcome following embryo cryopreservation,” Molecular and Cellular Endocrinology, vol. 169, no. 1-2, pp. 73–77, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. A. Wang, G. M. Chambers, M. Dieng, and E. A. Sullivan, “Assisted reproductive technology in Australia and New Zealand 2007,” Assisted Reproduction Technology Series, vol. 13, pp. 1–56, 2009.
  23. B. Huppertz and A. Herrler, “Regulation of proliferation and apoptosis during development of the preimplantation embryo and the placenta,” Birth Defects Research Part C, vol. 75, no. 4, pp. 249–261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Greenblutt, T. Di Beraradino, P. Chronis-Brown, D. Holt, and A. Lains, “Comparison of Global Medium and G1/G2 cleavage/blastocyst sequential media for cultre of human embryos after IVF. In:,” in European Society of Human Reproduction and Embryology (ESHRE '05), Copenhagan, Denmark, 2005.
  25. S. Xella, T. Marsella, D. Tagliasacchi et al., “Embryo quality and implantation rate in two different culture media: ISM1 versus Universal IVF Medium,” Fertility and Sterility, vol. 93, no. 6, pp. 1859–1863, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Baltz, “Media composition: salts and osmolality,” Methods in Molecular Biology, vol. 912, pp. 61–80, 2012.
  27. Y. Ho, K. Wigglesworth, J. J. Eppig, and R. M. Schultz, “Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression,” Molecular Reproduction and Development, vol. 41, no. 2, pp. 232–238, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Lane, D. K. Gardner, M. J. Hasler, and J. F. Hasler, “Use of G1.2/G2.2 media for commercial bovine embryo culture: equivalent development and pregnancy rates compared to co-culture,” Theriogenology, vol. 60, no. 3, pp. 407–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. M. B. Harvey and P. L. Kaye, “Insulin increases the cell number of the inner cell mass and stimulates morphological development of mouse blastocysts in vitro,” Development, vol. 110, no. 3, pp. 963–967, 1990. View at Scopus
  30. M. P. Storm, H. K. Bone, C. G. Beck et al., “Regulation of nanog expression by phosphoinositide 3-kinase-dependent signaling in murine embryonic stem cells,” Journal of Biological Chemistry, vol. 282, no. 9, pp. 6265–6273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Takao, T. Yokota, and H. Koide, “β-Catenin up-regulates Nanog expression through interaction with Oct-3/4 in embryonic stem cells,” Biochemical and Biophysical Research Communications, vol. 353, no. 3, pp. 699–705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. G. S. Sineva and V. A. Pospelov, “Inhibition of GSK3β enhances both adhesive and signalling activities of β-catenin in mouse embryonic stem cells,” Biology of the Cell, vol. 102, no. 10, pp. 549–560, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. X. He, M. Semenov, K. Tamai, and X. Zeng, “LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way,” Development, vol. 131, no. 8, pp. 1663–1677, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Po, E. Ferretti, E. Miele et al., “Hedgehog controls neural stem cells through p53-independent regulation of Nanog,” The EMBO Journal, vol. 29, no. 15, pp. 2646–2658, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Jia, K. Amanai, G. Wang, J. Tang, B. Wang, and J. Jiang, “Shaggy/GSK3 antagonizes hedgehog signalling by regulating Cubitus interruptus,” Nature, vol. 416, no. 6880, pp. 548–552, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Cartwright, C. McLean, A. Sheppard, D. Rivett, K. Jones, and S. Dalton, “LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism,” Development, vol. 132, no. 5, pp. 885–896, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. A. Gregory, Y. Qi, and S. R. Hann, “Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization,” Journal of Biological Chemistry, vol. 278, no. 51, pp. 51606–51612, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. L. D. Mayo, J. E. Dixon, D. L. Durden, N. K. Tonks, and D. B. Donner, “PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy,” Journal of Biological Chemistry, vol. 277, no. 7, pp. 5484–5489, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. T. M. Gottlieb, J. F. Martinez Leal, R. Seger, Y. Taya, and M. Oren, “Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis,” Oncogene, vol. 21, no. 8, pp. 1299–1303, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Ogawara, S. Kishishita, T. Obata et al., “Akt enhances Mdm2-mediated ubiquitination and degradation of p53,” Journal of Biological Chemistry, vol. 277, no. 24, pp. 21843–21850, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Lin, C. Chao, S. Saito et al., “p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression,” Nature Cell Biology, vol. 7, no. 2, pp. 165–171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. G. A. Turenne and B. D. Price, “Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53's transcriptional activity,” BMC Cell Biology, vol. 2, article 12, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Watcharasit, G. N. Bijur, L. Song, J. Zhu, X. Chen, and R. S. Jope, “Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53,” The Journal of biological chemistry, vol. 278, no. 49, pp. 48872–48879, 2003. View at Scopus
  44. P. Watcharasit, G. N. Bijur, J. W. Zmijewski et al., “Direct, activating interaction between glycogen synthase kinase-3β and p53 after DNA damage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 7951–7955, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Kulikov, K. A. Boehme, and C. Blattner, “Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance,” Molecular and Cellular Biology, vol. 25, no. 16, pp. 7170–7180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. J. C. Ghosh and D. C. Altieri, “Activation of p53-dependent apoptosis by acute ablation of glycogen synthase kinase-3β in colorectal cancer cells,” Clinical Cancer Research, vol. 11, no. 12, pp. 4580–4588, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Chazaud, Y. Yamanaka, T. Pawson, and J. Rossant, “Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway,” Developmental Cell, vol. 10, no. 5, pp. 615–624, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Yamanaka, F. Lanner, and J. Rossant, “FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst,” Development, vol. 137, no. 5, pp. 715–724, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. E. Chen, D. Egli, K. Niakan et al., “Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines,” Cell Stem Cell, vol. 4, no. 2, pp. 103–106, 2009. View at Publisher · View at Google Scholar · View at Scopus