About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 152052, 13 pages
http://dx.doi.org/10.1155/2013/152052
Research Article

Glutamine and Alanyl-Glutamine Increase RhoA Expression and Reduce Clostridium difficile Toxin-A-Induced Intestinal Epithelial Cell Damage

1Department of Morphology, Faculty of Medicine, Federal University of Ceará, Delmiro de Farias, 60416-030 Fortaleza, CE, Brazil
2Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, 1127 Coronel Nunes de Melo, 60430-270 Fortaleza, CE, Brazil
3Department of Physics, Faculty of Physics, Federal University of Ceará, 922 Campus do Pici, 60455-760 Fortaleza, CE, Brazil
4Biomedical Sciences Institute, Federal University of Rio de Janeiro, 373 Avenue Carlos Chagas, 21941-902 Rio de Janeiro, RJ, Brazil
5Division of Infectious Diseases and International Health, Center for Global Health, University of Virginia, 345 Crispell Drive, Room 2709, Charlottesville, VA 22903, USA

Received 22 August 2012; Accepted 12 November 2012

Academic Editor: Reinaldo B. Oriá

Copyright © 2013 Ana A. Q. A. Santos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. N. Ananthakrishnan, M. Issa, and D. G. Binion, “Clostridium difficile and inflammatory bowel disease,” Medical Clinics of North America, vol. 94, no. 1, pp. 135–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. D. B. Blossom and L. C. McDonald, “The challenges posed by reemerging Clostridium difficile infection,” Clinical Infectious Diseases, vol. 45, no. 2, pp. 222–227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Gaynes, D. Rimland, E. Killum et al., “Outbreak of Clostridium difficile infection in a long-term care facility: association with gatifloxacin use,” Clinical Infectious Diseases, vol. 38, no. 5, pp. 640–645, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. C. A. Muto, M. Pokrywka, K. Shutt et al., “A large outbreak of Clostridium difficile-associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use,” Infection Control and Hospital Epidemiology, vol. 26, no. 3, pp. 273–280, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. L. C. McDonald, M. Owings, and D. B. Jernigan, “Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996–2003,” Emerging Infectious Diseases, vol. 12, no. 3, pp. 409–415, 2006. View at Scopus
  6. J. Pépin, N. Saheb, M. A. Coulombe et al., “Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec,” Clinical Infectious Diseases, vol. 41, no. 9, pp. 1254–1260, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. C. P. Kelly, “A 76-year-old man with recurrent Clostridium difficile associated diarrhea: review of C difficile infection,” Journal of the American Medical Association, vol. 301, no. 9, pp. 954–962, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. V. G. Loo, L. Poirier, M. A. Miller, et al., “A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality,” The New England Journal of Medicine, vol. 353, no. 23, pp. 2442–2449, 2005.
  9. L. C. McDonald, G. E. Killgore, A. Thompson et al., “An epidemic, toxin gene-variant strain of Clostridium difficile,” The New England Journal of Medicine, vol. 353, no. 23, pp. 2433–2441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Pépin, L. Valiquette, M. E. Alary et al., “Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity,” Canadian Medical Association Journal, vol. 171, no. 5, pp. 466–472, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Freeman, M. P. Bauer, S. D. Baines et al., “The changing epidemiology of Clostridium difficile infections,” Clinical Microbiology Reviews, vol. 23, no. 3, pp. 529–549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. T. McGuire, P. Dobesh, D. Klepser, M. Rupp, and K. Olsen, “Clinically important interaction between statin drugs and Clostridium difficile toxin?” Medical Hypotheses, vol. 73, no. 6, pp. 1045–1047, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Castagliuolo, C. P. Kelly, B. S. Qiu, S. T. Nikulasson, J. Thomas LaMont, and C. Pothoulakis, “IL-11 inhibits Clostridium difficile toxin A enterotoxicity in rat ileum,” American Journal of Physiology, vol. 273, no. 2, pp. G333–G341, 1997. View at Scopus
  14. M. Riegler, R. Sedivy, C. Pothoulakis et al., “Clostridium difficile toxin B is more potent than toxin A in damaging human colonic epithelium in vitro,” Journal of Clinical Investigation, vol. 95, no. 5, pp. 2004–2011, 1995. View at Scopus
  15. D. Drudy, S. Fanning, and L. Kyne, “Toxin A-negative, toxin B-positive Clostridium difficile,” International Journal of Infectious Diseases, vol. 11, no. 1, pp. 5–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Genth, S. C. Dreger, J. Huelsenbeck, and I. Just, “Clostridium difficile toxins: more than mere inhibitors of Rho proteins,” The International Journal of Biochemistry and Cell Biology, vol. 40, no. 4, pp. 592–597, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Kim, S. H. Rhee, C. Pothoulakis, and J. T. LaMont, “Clostridium difficile toxin A binds colonocyte Src causing dephosphorylation of focal adhesion kinase and paxillin,” Experimental Cell Research, vol. 315, no. 19, pp. 3336–3344, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Sauerborn, P. Leukel, and C. von Eichel-Streiber, “The C-terminal ligand-binding domain of Clostridium difficile toxin A (TcdA) abrogates TcdA-specific binding to cells arid prevents mouse lethality,” FEMS Microbiology Letters, vol. 155, no. 1, pp. 45–54, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. H. J. Nam, J. K. Kang, S. K. Kim et al., “Clostridium difficile toxin A decreases acetylation of tubulin, leading to microtubule depolymerization through activation of histone deacetylase 6, and this mediates acute inflammation,” Journal of Biological Chemistry, vol. 285, no. 43, pp. 32888–32896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. A. C. Brito, M. H. L. P. Souza, A. A. Melo-Filho et al., “Role of pertussis toxin A subunit in neutrophil migration and vascular permeability,” Infection and Immunity, vol. 65, no. 3, pp. 1114–1118, 1997. View at Scopus
  21. K. Weiss, “Toxin-binding treatment for Clostridium difficile: a review including reports of studies with tolevamer,” International Journal of Antimicrobial Agents, vol. 33, no. 1, pp. 4–7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. G. A. C. Brito, J. Fujji, B. A. Carneiro-Filho, A. A. M. Lima, T. Obrig, and R. L. Guerrant, “Mechanism of Clostridium difficile toxin A-induced apoptosis in T84 cells,” The Journal of Infectious Diseases, vol. 186, no. 10, pp. 1438–1447, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. G. A. C. Brito, B. Carneiro-Filho, R. B. Oriá, R. V. Destura, A. A. M. Lima, and R. L. Guerrant, “Clostridium difficile toxin A induces intestinal epithelial cell apoptosis and damage: role of Gln and Ala-Gln in toxin A effects,” Digestive Diseases and Sciences, vol. 50, no. 7, pp. 1271–1278, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. B. Braga-Neto, C. A. Warren, R. B. Oriá et al., “Alanyl-glutamine and glutamine supplementation improves 5-fluorouracil-induced intestinal epithelium damage in vitro,” Digestive Diseases and Sciences, vol. 53, no. 10, pp. 2687–2696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. G. A. C. Brito, G. W. Sullivan, W. P. Ciesla Jr., H. T. Carper, G. L. Mandell, and R. L. Guerrant, “Clostridium difficile toxin A alters in vitro-adherent neutrophil morphology and function,” The Journal of Infectious Diseases, vol. 185, no. 9, pp. 1297–1306, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. B. A. Carneiro, J. Fujii, G. A. C. Brito et al., “Caspase and bid involvement in Clostridium difficile toxin A-induced apoptosis and modulation of toxin A effects by glutamine and alanyl-glutamine in vivo and in vitro,” Infection and Immunity, vol. 74, no. 1, pp. 81–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. B. A. Carneiro-Filho, R. B. Oriá, K. Wood Rea et al., “Alanyl-glutamine hastens morphologic recovery from 5-fluorouracil-induced mucositis in mice,” Nutrition, vol. 20, no. 10, pp. 934–941, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. G. P. Oliveira, C. M. Dias, P. Pelosi, and P. R. M. Rocco, “Understanding the mechanisms of glutamine action in critically ill patients,” Anais da Academia Brasileira de Ciencias, vol. 82, no. 2, pp. 417–430, 2010. View at Scopus
  29. K. D. Jandt, “Developments and perspectives of scanning probe microscopy (SPM) on organic materials systems,” Materials Science and Engineering R, vol. 21, no. 5-6, pp. 221–295, 1998. View at Scopus
  30. C. S. Quirino, G. O. Leite, L. M. Rebelo, et al., “Healing potential of Pequi (Caryocar coriaceum Wittm.) fruit pulp oil,” Phytochemistry Letters, vol. 2, no. 4, pp. 179–183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Heneweer, M. Schmidt, H. W. Denker, and M. Thie, “Molecular mechanisms in uterine epithelium during trophoblast binding: the role of small GTPase RhoA in human uterine Ishikawa cells,” Journal of Experimental and Clinical Assisted Reproduction, vol. 2, no. 4, pp. 1–11, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Schwan, B. Stecher, T. Tzivelekidis et al., “Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria,” PLoS Pathogens, vol. 5, no. 10, Article ID e1000626, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. C. B. Possidonio, M. L. Senna, D. M. Portilho et al., “α-cyclodextrin enhances myoblast fusion and muscle differentiation by the release of IL-4,” Cytokine, vol. 55, no. 2, pp. 280–287, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Gerdes, H. Lemke, and H. Baisch, “Cell cycle analysis of a cell proliferation associated human nuclear antigen defined by the monoclonal antibody Ki-67,” Journal of Immunology, vol. 133, no. 4, pp. 1710–1715, 1984. View at Scopus
  35. D. Docheva, D. Padula, C. Popov, W. Mutschler, H. Clausen-Schaumann, and M. Schieker, “Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy: stem cells,” Journal of Cellular and Molecular Medicine, vol. 12, no. 2, pp. 537–552, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Kim, E. Kokkotou, X. Na et al., “Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase,” Gastroenterology, vol. 129, no. 6, pp. 1875–1888, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Kim, S. H. Rhee, C. Pothoulakis, and J. T. LaMont, “Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of fas ligand,” Gastroenterology, vol. 133, no. 3, pp. 875–886, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Just, M. Wilm, J. Selzer et al., “The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins,” Journal of Biological Chemistry, vol. 270, no. 23, pp. 13932–13936, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Castagliuolo, M. Riegler, A. Pasha et al., “Neurokinin-1 (NK-1) receptor is required in Clostridium difficile-induced enteritis,” Journal of Clinical Investigation, vol. 101, no. 8, pp. 1547–1550, 1998. View at Scopus
  40. N. Fernandez, Q. Chang, D. W. Buster, D. J. Sharp, and A. Ma, “A model for the regulatory network controlling the dynamics of kinetochore microtubule plus-ends and poleward flux in metaphase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 19, pp. 7846–7851, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. J. S. Popova and M. M. Rasenick, “Gβγ mediates the interplay between tubulin dimmers and microtubules in the modulation of Gq signaling,” Journal of Biological Chemistry, vol. 278, no. 36, pp. 34299–34308, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Gao, L. Huo, X. Sun et al., “The tumor suppressor CYLD regulates microtubule dynamics and plays a role in cell migration,” Journal of Biological Chemistry, vol. 283, no. 14, pp. 8802–8809, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. A. D. Bicek, E. Tüzel, A. Demtchouk et al., “Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells,” Molecular Biology of the Cell, vol. 20, no. 12, pp. 2943–2953, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Bilban, A. Haschemi, B. Wegiel, B. Y. Chin, O. Wagner, and L. E. Otterbein, “Heme oxygenase and carbon monoxide initiate homeostatic signaling,” Journal of Molecular Medicine, vol. 86, no. 3, pp. 267–279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. V. L. Gabai and M. Y. Sherman, “Invited review: interplay between molecular chaperones and signaling pathways in survival of heat shock,” Journal of Applied Physiology, vol. 92, no. 4, pp. 1743–1748, 2002. View at Scopus
  46. K. D. Singleton, V. E. Beckey, and P. E. Wischmeyer, “Glutamine prevents activations of NF-κB and stress kinase pathways, attenuates inflammatory cytokine release, and prevents acute respiratory distress syndrome (ARDS) following sepsis,” Shock, vol. 24, no. 6, pp. 583–589, 2005. View at Scopus
  47. K. D. Singleton and P. E. Wischmeyer, “Glutamine's protection against sepsis and lung injury is dependent on heat shock protein 70 expression,” American Journal of Physiology, vol. 292, no. 5, pp. R1839–R1845, 2007. View at Publisher · View at Google Scholar · View at Scopus