About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 152909, 9 pages
http://dx.doi.org/10.1155/2013/152909
Research Article

The Effect of Msh2 Knockdown on Toxicity Induced by tert-Butyl-hydroperoxide, Potassium Bromate, and Hydrogen Peroxide in Base Excision Repair Proficient and Deficient Cells

1Centre for Occupational and Environmental Health, Institute of Population Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
2School of Environment and Life Sciences, Cockcroft Building, University of Salford, Salford M5 4WT, UK

Received 18 April 2013; Revised 3 July 2013; Accepted 10 July 2013

Academic Editor: Nikhat J. Siddiqi

Copyright © 2013 N. Cooley et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Cooke, M. D. Evans, M. Dizdaroglu, and J. Lunec, “Oxidative DNA damage: mechanisms, mutation, and disease,” The FASEB Journal, vol. 17, no. 10, pp. 1195–1214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Wiseman and B. Halliwell, “Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer,” Biochemical Journal, vol. 313, no. 1, pp. 17–29, 1996. View at Scopus
  3. A. Valavanidis, T. Vlachogianni, and C. Fiotakis, “8-hydroxy-2-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis,” Journal of Environmental Science and Health. Part C, vol. 27, no. 2, pp. 120–139, 2009. View at Scopus
  4. J. Rivière, J.-L. Ravanat, and J. R. Wagner, “Ascorbate and H2O2 induced oxidative DNA damage in Jurkat cells,” Free Radical Biology and Medicine, vol. 40, no. 12, pp. 2071–2079, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Tormos, F. J. Chaves, M. J. Garcia et al., “Role of glutathione in the induction of apoptosis and c-fos and c-jun mRNAs by oxidative stress in tumor cells,” Cancer Letters, vol. 208, no. 1, pp. 103–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Ballmaier and B. Epe, “Oxidative DNA damage induced by potassium bromate under cell-free conditions and in mammalian cells,” Carcinogenesis, vol. 16, no. 2, pp. 335–342, 1995. View at Scopus
  7. J. Termini, “Hydroperoxide-induced DNA damage and mutations,” Mutation Research, vol. 450, no. 1-2, pp. 107–124, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Svilar, E. M. Goellner, K. H. Almeida, and R. W. Sobol, “Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage,” Antioxidants and Redox Signaling, vol. 14, no. 12, pp. 2491–2507, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. T. Russo, G. De Luca, P. Degan, and M. Bignami, “Different DNA repair strategies to combat the threat from 8-oxoguanine,” Mutation Research, vol. 614, no. 1-2, pp. 69–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Dizdaroglu, B. Karahalil, S. Sentürker, T. J. Buckley, and T. Roldán-Arjona, “Excision of products of oxidative DNA base damage by human NTH1 protein,” Biochemistry, vol. 38, no. 1, pp. 243–246, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Hu, N. C. De Souza-Pinto, K. Haraguchi et al., “Repair of formamidopyrimidines in DNA involves different glycosylases: role of the OGG1, NTH1, and NEIL1 enzymes,” Journal of Biological Chemistry, vol. 280, no. 49, pp. 40544–40551, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Yang, M. A. Chaudhry, and S. S. Wallace, “Base excision repair by hNTH1 and hOGG1: a two edged sword in the processing of DNA damage in γ-irradiated human cells,” DNA Repair, vol. 5, no. 1, pp. 43–51, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. G.-M. Li, “Mechanisms and functions of DNA mismatch repair,” Cell Research, vol. 18, no. 1, pp. 85–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Colussi, E. Parlanti, P. Degan et al., “The Mammalian Mismatch Repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool,” Current Biology, vol. 12, no. 11, pp. 912–918, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. T. Russo, G. De Luca, P. Degan et al., “Accumulation of the oxidative base lesion 8-hydroxyguanine in DNA of tumor-prone mice defective in both the Myh and Ogg1 DNA glycosylases,” Cancer Research, vol. 64, no. 13, pp. 4411–4414, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Chiera, E. Meccia, P. Degan et al., “Overexpression of human NOX1 complex induces genome instability in mammalian cells,” Free Radical Biology and Medicine, vol. 44, no. 3, pp. 332–342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. A. Martin, A. McCarthy, L. J. Barber et al., “Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2,” EMBO Molecular Medicine, vol. 1, no. 6-7, pp. 323–337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. L. DeWeese, J. M. Shipman, N. A. Larrier et al., “Mouse embryonic stem cells carrying one or two defective Msh2 alleles respond abnormally to oxidative stress inflicted by low-level radiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11915–11920, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. S. M. Holt, J.-L. Scemama, M. I. Panayiotidis, and A. G. Georgakilas, “Compromised repair of clustered DNA damage in the human acute lymphoblastic leukemia MSH2-deficient NALM-6 cells,” Mutation Research, vol. 674, no. 1-2, pp. 123–130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. T. Russo, G. De Luca, I. Casorelli et al., “Role of MUTYH and MSH2 in the control of oxidative DNA damage, genetic instability, and tumorigenesis,” Cancer Research, vol. 69, no. 10, pp. 4372–4379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Papouli, P. Cejka, and J. Jiricny, “Dependence of the cytotoxicity of DNA-damaging agents on the mismatch repair status of human cells,” Cancer Research, vol. 64, no. 10, pp. 3391–3394, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Cooley, R. H. Elder, and A. C. Povey, “The effect of Msh2 knockdown on methylating agent induced toxicity in DNA glycosylase deficient cells,” Toxicology, vol. 268, no. 1-2, pp. 111–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. E. Fordham, E. C. Matheson, K. Scott, J. A. E. Irving, and J. M. Allan, “DNA mismatch repair status affects cellular response to Ara-C and other anti-leukemic nucleoside analogs,” Leukemia, vol. 25, no. 6, pp. 1046–1049, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. R. A. Hardman, C. A. Afshari, and J. C. Barrett, “Involvement of mammalian MLH1 in the apoptotic response to peroxide-induced oxidative stress,” Cancer Research, vol. 61, no. 4, pp. 1392–1397, 2001. View at Scopus
  25. G. Ibeanu, B. Hartenstein, W. C. Dunn et al., “Overexpression of human DNA repair protein N-methylpurine-DNA glycosylase results in the increased removal of N-methylpurines in DNA without a concomitant increase in resistance to alkylating agents in Chinese hamster ovary cells,” Carcinogenesis, vol. 13, no. 11, pp. 1989–1995, 1992. View at Scopus
  26. B. Hang, B. Singer, G. P. Margison, and R. H. Elder, “Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1,N6-ethenoadenine and hypoxanthine but not of 3,N4-ethenocytosine or 8-oxoguanine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 24, pp. 12869–12874, 1997. View at Scopus
  27. C.-Y. I. Lee, J. C. Delaney, M. Kartalou et al., “Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG),” Biochemistry, vol. 48, no. 9, pp. 1850–1861, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. K. A. Johnson, M. L. Mierzwa, S. P. Fink, and L. J. Marnett, “MutS recognition of exocyclic DNA adducts that are endogenous products of lipid oxidation,” Journal of Biological Chemistry, vol. 274, no. 38, pp. 27112–27118, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. E. A. Lapshina, I. B. Zavodnik, M. Labieniec, K. Rȩkawiecka, and M. Bryszewska, “Cytotoxic and genotoxic effects of tert-butyl hydroperoxide on Chinese hamster B14 cells,” Mutation Research, vol. 583, no. 2, pp. 189–197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. I. A. Blair, “Lipid hydroperoxide-mediated DNA damage,” Experimental Gerontology, vol. 36, no. 9, pp. 1473–1481, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Zhang, D. De Silva, B. Sun et al., “Cellular and molecular mechanisms of bromate-induced cytotoxicity in human and rat kidney cells,” Toxicology, vol. 269, no. 1, pp. 13–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Mendez-Bermudez and N. J. Royle, “Deficiency in DNA mismatch repair increases the rate of telomere shortening in normal human cells,” Human Mutation, vol. 32, no. 8, pp. 939–946, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Kawada, T. Yonei, H. Ueoka et al., “Comparison of chemosensitivity tests: clonogenic assay versus MTT assay,” Acta Medica Okayama, vol. 56, no. 3, pp. 129–134, 2002. View at Scopus
  34. M. Bačkorová, M. Bačkor, J. Mikeš, R. Jendželovský, and P. Fedoročko, “Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid,” Toxicology in Vitro, vol. 25, no. 1, pp. 37–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. M. V. Berridge, P. M. Herst, and A. S. Tan, “Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction,” Biotechnology Annual Review, vol. 11, pp. 127–152, 2005. View at Publisher · View at Google Scholar · View at Scopus