About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 154073, 5 pages
http://dx.doi.org/10.1155/2013/154073
Research Article

Feasibility of a Microarray-Based Point-of-Care CYP2C19 Genotyping Test for Predicting Clopidogrel On-Treatment Platelet Reactivity

1Department of Laboratory Medicine, Bucheon St. Mary's Hospital, 2 Sosa-dong, Wonmi-gu, Gyeonggi-do, Bucheon-si 420-717, Republic of Korea
2Catholic Laboratory Development and Evaluation Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
3Cardiovascular Center and Cardiology Division, Uijeongbu St. Mary’s Hospital, Uijeongbu 480-717, Republic of Korea
4Cardiovascular Center and Cardiology Division, Seoul St. Mary’s Hospital, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea

Received 17 August 2012; Accepted 11 March 2013

Academic Editor: Yasemin Alanay

Copyright © 2013 Hyojin Chae et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Müller, F. Besta, C. Schulz, S. Massberg, A. Schönig, and M. Gawaz, “Prevalence of clopidogrel non-responders among patients with stable angina pectoris scheduled for elective coronary stent placement,” Thrombosis and Haemostasis, vol. 89, no. 5, pp. 783–787, 2003. View at Scopus
  2. P. Savi and J. M. Herbert, “Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis,” Seminars in Thrombosis and Hemostasis, vol. 31, no. 2, pp. 174–183, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. B. W. Buchan, J. F. Peterson, C. H. Cogbill, et al., “Evaluation of a microarray-based genotyping assay for the rapid detection of cytochrome P450 2C19 *2 and *3 polymorphisms from whole blood using nanoparticle probes,” American Journal of Clinical Pathology, vol. 136, no. 4, pp. 604–608, 2011.
  4. T. Gremmel, S. Steiner, D. Seidinger, R. Koppensteiner, S. Panzer, and C. W. Kopp, “Comparison of methods to evaluate clopidogrel-mediated platelet inhibition after percutaneous intervention with stent implantation,” Thrombosis and Haemostasis, vol. 101, no. 2, pp. 333–339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Bonello, U. S. Tantry, R. Marcucci et al., “Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate,” Journal of the American College of Cardiology, vol. 56, no. 12, pp. 919–933, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Chen, S. Qin, J. Xie et al., “Genetic polymorphism analysis of CYP2C19 in Chinese Han populations from different geographic areas of mainland China,” Pharmacogenomics, vol. 9, no. 6, pp. 691–702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Gladding, H. White, J. Voss et al., “Pharmacogenetic testing for clopidogrel using the rapid infiniti analyzer. A Dose-Escalation Study,” Cardiovascular Interventions, vol. 2, no. 11, pp. 1095–1101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. C. Lee, G. A. McMillin, N. Babic, R. Melis, and K. T. J. Yeo, “Evaluation of a CYP2C19 genotype panel on the GenMark eSensor platform and the comparison to the Autogenomics Infiniti and Luminex CYP2C19 panels,” Clinica Chimica Acta, vol. 412, no. 11-12, pp. 1133–1137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. D. Roberts, G. A. Wells, M. R. Le May, et al., “Point-of-care genetic testing for personalisation of antiplatelet treatmetn (RAPID GENE): a prospective, randomised, proof-of-concept trial,” The Lancet, vol. 379, no. 9827, pp. 1705–1722, 2012.
  10. M. R. Langley, J. K. Booker, J. P. Evans, H. L. McLeod, and K. E. Weck, “Validation of clinical testing for warfarin sensitivity: comparison of CYP2C9-VKORC1 genotyping assays and warfarin-dosing algorithms,” Journal of Molecular Diagnostics, vol. 11, no. 3, pp. 216–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. T. A. Nguyen, J. G. Diodati, and C. Pharand, “Resistance to clopidogrel: a review of the evidence,” Journal of the American College of Cardiology, vol. 45, no. 8, pp. 1157–1164, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. X. P. Qin, H. G. Xie, W. Wang, et al., “Effect of the gene dosage of CgammaP2C19 on diazepam metabolism in Chinese subjects,” Clinical Pharmacology and Therapeutics, vol. 66, no. 6, pp. 642–646, 1999.
  13. Y. H. Jeong, U. S. Tantry, I. S. Kim, et al., “Effect of CYP2C19*2 and *3 loss-of-function alleles on platelet reactivity and adverse clinical events in East Asian acute myocardial infarction survivors treated with clopidogrel and aspirin,” Circulation Cardiovascular Interventions, vol. 4, no. 6, pp. 585–594, 2011.
  14. M. Man, M. Farmen, C. Dumaual et al., “Genetic variation in metabolizing enzyme and transporter genes: comprehensive assessment in 3 major East Asian subpopulations with comparison to Caucasians and Africans,” Journal of Clinical Pharmacology, vol. 50, no. 8, pp. 929–940, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. J. Storhoff, S. S. Marla, P. Bao et al., “Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system,” Biosensors and Bioelectronics, vol. 19, no. 8, pp. 875–883, 2004. View at Publisher · View at Google Scholar · View at Scopus