About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 154919, 10 pages
http://dx.doi.org/10.1155/2013/154919
Research Article

Effect of Ex Vivo Culture Conditions on Immunosuppression by Human Mesenchymal Stem Cells

1Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University College of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 135-710, Republic of Korea
2Biomedical Research Institute, LIFELIVER. Co., LTD., 877-3 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-807, Republic of Korea
3Department of Pediatrics, Dong-A Medical Center, Dong-A University College of Medicine, 26 Daesingongwonro, Soe-gu, Busan 602-172, Republic of Korea

Received 7 January 2013; Revised 20 March 2013; Accepted 16 April 2013

Academic Editor: Wolfgang Arthur Schulz

Copyright © 2013 Myoung Woo Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Dominici, K. le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. H. K. Salem and C. Thiemermann, “Mesenchymal stromal cells: current understanding and clinical status,” Stem Cells, vol. 28, no. 3, pp. 585–596, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Polchert, J. Sobinsky, G. W. Douglas et al., “IFN-γ activation of mesenchymal stem cells for treatment and prevention of graft versus host disease,” European Journal of Immunology, vol. 38, no. 6, pp. 1745–1755, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. K. C. Russell, D. G. Phinney, M. R. Lacey, B. L. Barrilleaux, K. E. Meyertholen, and K. C. O'Connor, “In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment,” Stem Cells, vol. 28, no. 4, pp. 788–798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. W. A. Silva Jr., D. T. Covas, R. A. Panepucci et al., “The profile of gene expression of human marrow mesenchymal stem cells,” Stem Cells, vol. 21, no. 6, pp. 661–669, 2003. View at Scopus
  7. W. Wagner, R. E. Feldmann Jr., A. Seckinger et al., “The heterogeneity of human mesenchymal stem cell preparations—evidence from simultaneous analysis of proteomes and transcriptomes,” Experimental Hematology, vol. 34, no. 4, pp. 536–548, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Wagner, “Senescence is heterogeneous in mesenchymal stromal cells: kaleidoscopes for cellular aging,” Cell Cycle, vol. 9, no. 15, pp. 2923–2924, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. R. Seghatoleslami and R. S. Tuan, “Cell density dependent regulation of AP-1 activity is important for chondrogenic differentiation of C3H10T1/2 mesenchymal cells,” Journal of Cellular Biochemistry, vol. 84, no. 2, pp. 237–248, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. D. Ho, W. Wagner, and W. Franke, “Heterogeneity of mesenchymal stromal cell preparations,” Cytotherapy, vol. 10, no. 4, pp. 320–330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Reyes, T. Lund, T. Lenvik, D. Aguiar, L. Koodie, and C. M. Verfaillie, “Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells,” Blood, vol. 98, pp. 2615–2625, 2001.
  12. W. Vogel, F. Grünebach, C. A. Messam, L. Kanz, W. Brugger, and H. Bühring, “Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells,” Haematologica, vol. 88, no. 2, pp. 126–133, 2003. View at Scopus
  13. P. A. Sotiropoulou, S. A. Perez, M. Salagianni, C. N. Baxevanis, and M. Papamichail, “Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells,” Stem Cells, vol. 24, no. 2, pp. 462–471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Lian, E. Lye, K. Suan Yeo et al., “Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs,” Stem Cells, vol. 25, no. 2, pp. 425–436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. D. S. Yoon, Y. H. Kim, H. S. Jung, S. Paik, and J. W. Lee, “Importance of Sox2 in maintenance of cell proliferation and multipotency of mesenchymal stem cells in low-density culture,” Cell Proliferation, vol. 44, no. 5, pp. 428–440, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Cholewa, T. Stiehl, A. Schellenberg et al., “Expansion of adipose mesenchymal stromal cells is affected by human platelet lysate and plating density,” Cell Transplantation, vol. 20, no. 9, pp. 1409–1422, 2011.
  17. M. B. Eslaminejad and S. Nadri, “Murine mesenchymal stem cell isolated and expanded in low and high density culture system: surface antigen expression and osteogenic culture mineralization,” In Vitro Cellular & Developmental Biology-Animal, vol. 45, no. 8, pp. 451–459, 2009.
  18. S. G. Harris, J. Padilla, L. Koumas, D. Ray, and R. P. Phipps, “Prostaglandins as modulators of immunity,” Trends in Immunology, vol. 23, no. 3, pp. 144–150, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Mandapathil and T. L. Whiteside, “Targeting human inducible regulatory T cells (Tr1) in patients with cancer: blocking of adenosineprostaglandin E2 cooperation,” Expert Opinion on Biological Therapy, vol. 11, no. 9, pp. 1203–1214, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Yañez, A. Oviedo, M. Aldea, J. A. Bueren, and M. L. Lamana, “Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells,” Experimental Cell Research, vol. 316, no. 19, pp. 3109–3123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. H. Ylöstalo, T. J. Bartosh, K. Coble, and D. J. Prockop, “Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype,” Stem Cells, vol. 30, pp. 2283–2296, 2012.
  22. S. González, V. Groh, and T. Spies, “Immunobiology of human NKG2D and its ligands,” Current Topics in Microbiology and Immunology, vol. 298, pp. 121–138, 2005. View at Scopus
  23. S. Textor, N. Fiegler, A. Arnold, A. Porgador, T. G. Hofmann, and A. Cerwenka, “Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2,” Cancer Research, vol. 71, no. 18, pp. 5998–6009, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. K. H. Yoo, I. K. Jang, M. W. Lee et al., “Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues,” Cellular Immunology, vol. 259, no. 2, pp. 150–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Zappia, S. Casazza, E. Pedemonte et al., “Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy,” Blood, vol. 106, no. 5, pp. 1755–1761, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Krampera, L. Cosmi, R. Angeli et al., “Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells,” Stem Cells, vol. 24, no. 2, pp. 386–398, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. L. Chan, K. C. Tang, A. P. Patel et al., “Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-γ,” Blood, vol. 107, no. 12, pp. 4817–4824, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Krampera, S. Glennie, J. Dyson et al., “Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide,” Blood, vol. 101, no. 9, pp. 3722–3729, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Augello, R. Tasso, S. M. Negrini et al., “Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway,” European Journal of Immunology, vol. 35, no. 5, pp. 1482–1490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. W. T. Tse, J. D. Pendleton, W. M. Beyer, M. C. Egalka, and E. C. Guinan, “Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation,” Transplantation, vol. 75, no. 3, pp. 389–397, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Djouad, P. Plence, C. Bony et al., “Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals,” Blood, vol. 102, no. 10, pp. 3837–3844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Aggarwal and M. F. Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses,” Blood, vol. 105, no. 4, pp. 1815–1822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Beyth, Z. Borovsky, D. Mevorach et al., “Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness,” Blood, vol. 105, no. 5, pp. 2214–2219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Sato, K. Ozaki, I. Oh et al., “Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells,” Blood, vol. 109, no. 1, pp. 228–234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. D. H. Munn, M. D. Sharma, and A. L. Mellor, “Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells,” Journal of Immunology, vol. 172, no. 7, pp. 4100–4110, 2004. View at Scopus
  36. G. M. Spaggiari, A. Capobianco, H. Abdelrazik, F. Becchetti, M. C. Mingari, and L. Moretta, “Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2,” Blood, vol. 111, no. 3, pp. 1327–1333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. P. H. Tan and A. K. Bharath, “Manipulation of indoleamine 2,3 dioxygenase; a novel therapeutic target for treatment of diseases,” Expert Opinion on Therapeutic Targets, vol. 13, no. 8, pp. 987–1012, 2009. View at Publisher · View at Google Scholar · View at Scopus