About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 161456, 10 pages
http://dx.doi.org/10.1155/2013/161456
Research Article

Interaction of Human Dopa Decarboxylase with L-Dopa: Spectroscopic and Kinetic Studies as a Function of pH

Section of Biological Chemistry, Department of Life Sciences and Reproduction, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy

Received 18 April 2013; Accepted 8 May 2013

Academic Editor: Alessandro Paiardini

Copyright © 2013 Riccardo Montioli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Amadasi, M. Bertoldi, R. Contestabile et al., “Pyridoxal 5-phosphate enzymes as targets for therapeutic agents,” Current Medicinal Chemistry, vol. 14, no. 12, pp. 1291–1324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Cellini, A. Lorenzetto, R. Montioli, E. Oppici, and C. B. Voltattorni, “Human liver peroxisomal alanine:glyoxylate aminotransferase: different stability under chemical stress of the major allele, the minor allele, and its pathogenic G170R variant,” Biochimie, vol. 92, no. 12, pp. 1801–1811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Cellini, E. Oppici, A. Paiardini, and R. Montioli, “Molecular insights into primary hyperoxaluria type 1 pathogenesis,” Frontiers in Bioscience, vol. 17, pp. 621–634, 2012.
  4. M. L. di Salvo, R. Contestabile, A. Paiardini, and B. Maras, “Glycine consumption and mitochondrial serine hydroxymethyltransferase in cancer cells: the heme connection,” Medical Hypotheses, vol. 80, pp. 633–636, 2013.
  5. A. E. Pegg, L. M. Shantz, and C. S. Coleman, “Ornithine decarboxylase as a target for chemoprevention,” Journal of Cellular Biochemistry, vol. 58, no. 22, pp. 132–138, 1995. View at Scopus
  6. N. A. Rao, R. Talwar, and H. S. Savithri, “Molecular organization, catalytic mechanism and function of serine hydroxymethyltransferase—a potential target for cancer chemotherapy,” International Journal of Biochemistry and Cell Biology, vol. 32, no. 4, pp. 405–416, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Storici, G. Capitani, D. De Biase et al., “Crystal structure of GABA-aminotransferase, a target for antiepileptic drug therapy,” Biochemistry, vol. 38, no. 27, pp. 8628–8634, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Cellini, R. Montioli, E. Oppici, and C. B. Voltattorni, “Biochemical and computational approaches to improve the clinical treatment of dopa decarboxylase-related diseases: an overview,” Open Biochemistry Journal, vol. 6, pp. 131–138, 2012.
  9. F. Daidone, R. Montioli, A. Paiardini, et al., “Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors,” PLoS ONE, vol. 7, no. 2, Article ID e31610, 2012. View at Publisher · View at Google Scholar
  10. R. Montioli, E. Oppici, B. Cellini, A. Roncador, M. Dindo, and C. B. Voltattorni, “S250F variant associated with aromatic amino acid decarboxylase deficiency: molecular defects and intracellular rescue by pyridoxine,” Human Molecular Genetics, vol. 22, no. 8, pp. 1615–1624, 2013. View at Publisher · View at Google Scholar
  11. R. Montioli, B. Cellini, and C. Borri Voltattorni, “Molecular insights into the pathogenicity of variants associated with the aromatic amino acid decarboxylase deficiency,” Journal of Inherited Metabolic Disease, vol. 34, pp. 1213–1224, 2011.
  12. B. Maras, P. Dominici, D. Barra, F. Bossa, and C. Borri Voltattorni, “Pig kidney 3,4-dihydroxyphenylalanine (Dopa) decarboxylase. Primary structure and relationships to other amino acid decarboxylases,” European Journal of Biochemistry, vol. 201, no. 2, pp. 385–391, 1991. View at Scopus
  13. C. B. Voltattorni, A. Minelli, and P. Dominici, “Interaction of aromatic amino acids in D and L forms with 3,4-dihydroxyphenylalanine decarboxylase from pig kidney,” Biochemistry, vol. 22, no. 9, pp. 2249–2254, 1983. View at Scopus
  14. C. B. Voltattorni, A. Minelli, and C. Turano, “Spectral properties of the coenzyme bound to DOPA decarboxylase from pig kidney,” FEBS Letters, vol. 17, no. 2, pp. 231–235, 1971. View at Scopus
  15. C. B. Voltattorni, A. Minelli, and P. Vecchini, “Purification and characterization of 3,4-dihydroxyphenylalanine decarboxylase from pig kidney,” European Journal of Biochemistry, vol. 93, no. 1, pp. 181–187, 1979. View at Scopus
  16. P. Dominici, B. Tancini, D. Barra, and C. B. Voltattorni, “Purification and characterization of rat-liver 3,4-dihydroxyphenylalanine decarboxylase,” European Journal of Biochemistry, vol. 169, no. 1, pp. 209–213, 1987. View at Scopus
  17. A. Fiori, C. Turano, and C. Borri Voltattorni, “Interaction of L DOPA decarboxylase with substrates. A spectrophotometric study,” FEBS Letters, vol. 54, no. 2, pp. 122–125, 1975. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Bertoldi and C. Borri Voltattorni, “Reaction of dopa decarboxylase with L-aromatic amino acids under aerobic and anaerobic conditions,” Biochemical Journal, vol. 352, no. 2, pp. 533–538, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Bertoldi, B. Cellini, B. Maras, and C. B. Voltattorni, “A quinonoid is an intermediate of oxidative deamination reaction catalyzed by Dopa decarboxylase,” FEBS Letters, vol. 579, no. 23, pp. 5175–5180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Bertoldi, B. Cellini, R. Montioli, and C. B. Voltattorni, “Insights into the mechanism of oxidative deamination catalyzed by DOPA decarboxylase,” Biochemistry, vol. 47, no. 27, pp. 7187–7195, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Bertoldi, P. Frigeri, M. Paci, and C. B. Voltattorni, “Reaction specificity of native and nicked 3,4-dihydroxyphenylalanine decarboxylase,” Journal of Biological Chemistry, vol. 274, no. 9, pp. 5514–5521, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Bertoldi, M. Gonsalvi, R. Contestabile, and C. B. Voltattorni, “Mutation of tyrosine 332 to phenylalanine converts dopa decarboxylase into a decarboxylation-dependent oxidative deaminase,” Journal of Biological Chemistry, vol. 277, no. 39, pp. 36357–36362, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Dominici, P. S. Moore, S. Castellani, M. Bertoldi, and C. B. Voltattorni, “Mutation of cysteine 111 in Dopa decarboxylase leads to active site perturbation,” Protein Science, vol. 6, no. 9, pp. 2007–2015, 1997. View at Scopus
  24. P. S. Moore, P. Dominici, and C. Borri Voltattorni, “Cloning and expression of pig kidney dopa decarboxylase: comparison of the naturally occurring and recombinant enzymes,” Biochemical Journal, vol. 315, no. 1, pp. 249–256, 1996. View at Scopus
  25. H. Hayashi, H. Mizuguchi, and H. Kagamiyama, “Rat liver aromatic L-amino acid decarboxylase: spectroscopic and kinetic analysis of the coenzyme and reaction intermediates,” Biochemistry, vol. 32, no. 3, pp. 812–818, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Hayashi, F. Tsukiyama, S. Ishii, H. Mizuguchi, and H. Kagamiyama, “Acid base chemistry of the reaction of aromatic L-amino acid decarboxylase and dopa analyzed by transient and steady-state kinetics: preferential binding of the substrate with its amino group unprotonated,” Biochemistry, vol. 38, no. 47, pp. 15615–15622, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Giardina, R. Montioli, S. Gianni, et al., “Open conformation of human DOPA decarboxylase reveals the mechanism of PLP addition to Group II decarboxylases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 51, pp. 20514–20519, 2011. View at Publisher · View at Google Scholar
  28. P. Burkhard, P. Dominici, C. Borri-Voltattorni, J. N. Jansonius, and V. N. Malashkevich, “Structural insight into Parkinson's disease treatment from drug-inhibited DOPA decarboxylase,” Nature Structural Biology, vol. 8, no. 11, pp. 963–967, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Singh, F. Spyrakis, P. Cozzini, A. Paiardini, S. Pascarella, and A. Mozzarelli, “Chemogenomics of pyridoxal 5-phosphate dependent enzymes,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 28, no. 1, pp. 183–194, 2013. View at Publisher · View at Google Scholar
  30. A. Minelli, A. T. Charteris, C. B. Voltattorni, and R. A. John, “Reactions of DOPA (3,4-dihydroxyphenylalanine) decarboxylase with DOPA,” Biochemical Journal, vol. 183, no. 2, pp. 361–368, 1979. View at Scopus
  31. A. F. Sherald, J. C. Sparrow, and T. R. F. Wright, “A spectrophotometric assay for Drosophila dopa decarboxylase,” Analytical Biochemistry, vol. 56, no. 1, pp. 300–305, 1973. View at Scopus
  32. A. Charteris and R. John, “An investigation of the assay of dopamine using trinitrobenzensulphonic acid,” Analytical Biochemistry, vol. 66, no. 2, pp. 365–371, 1975. View at Scopus
  33. C. M. Metzler, A. G. Harris, and D. E. Metzler, “Spectroscopic studies of quinonoid species from pyridoxal 5'-phosphate,” Biochemistry, vol. 27, no. 13, pp. 4923–4933, 1988. View at Scopus
  34. M. Bertoldi and C. B. Voltattorni, “Multiple roles of the active site lysine of Dopa decarboxylase,” Archives of Biochemistry and Biophysics, vol. 488, no. 2, pp. 130–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Cellini, M. Bertoldi, R. Montioli, and C. B. Voltattorni, “Probing the role of Tyr 64 of Treponema denticola cystalysin by site-directed mutagenesis and kinetic studies,” Biochemistry, vol. 44, no. 42, pp. 13970–13980, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. G. A. Hunter, J. Zhang, and G. C. Ferreira, “Transient kinetic studies support refinements to the chemical and kinetic mechanisms of aminolevulinate synthase,” Journal of Biological Chemistry, vol. 282, no. 32, pp. 23025–23035, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Zhou and M. D. Toney, “pH Studies on the mechanism of the pyridoxal phosphate-dependent dialkylglycine decarboxylase,” Biochemistry, vol. 38, no. 1, pp. 311–320, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. W. E. Karsten, T. Ohshiro, Y. Izumi, and P. F. Cook, “Initial velocity, spectral, and pH studies of the serine-glyoxylate aminotransferase from Hyphomicrobiuim methylovorum,” Archives of Biochemistry and Biophysics, vol. 388, no. 2, pp. 267–275, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. D. M. Kiick and P. F. Cook, “pH studies toward the elucidation of the auxiliary catalyst for pig heart aspartate aminotransferase,” Biochemistry, vol. 22, no. 2, pp. 375–382, 1983. View at Scopus
  40. K. O. Honikel and N. B. Madsen, “Comparison of the absorbance spectra and fluorescence behavior of phosphorylase b with that of model pyridoxal phosphate derivatives in various solvents,” Journal of Biological Chemistry, vol. 247, no. 4, pp. 1057–1064, 1972. View at Scopus
  41. M. T. Olmo, F. Sánchez-Jiménez, M. A. Medina, and H. Hayashi, “Spectroscopic analysis of recombinant rat histidine decarboxylase,” Journal of Biochemistry, vol. 132, no. 3, pp. 433–439, 2002. View at Scopus
  42. W. C. Chu and D. E. Metzler, “Enzymatically active truncated cat brain glutamate decarboxylase: expression, purification, and absorption spectrum,” Archives of Biochemistry and Biophysics, vol. 313, no. 2, pp. 287–295, 1994. View at Publisher · View at Google Scholar · View at Scopus