About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 162513, 31 pages
http://dx.doi.org/10.1155/2013/162513
Review Article

Structures and Properties of Naturally Occurring Polyether Antibiotics

Department of Biochemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

Received 29 August 2012; Revised 12 December 2012; Accepted 4 January 2013

Academic Editor: Ivayla Pantcheva-Kadreva

Copyright © 2013 Jacek Rutkowski and Bogumil Brzezinski. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. J. Dutton, B. J. Banks, and C. B. Cooper, “Polyether ionophores,” Natural Product Reports, vol. 12, no. 2, pp. 165–181, 1995.
  2. T. R. Callaway, T. S. Edrington, J. L. Rychlik et al., “Ionophores: their use as ruminant growth promotants and impact on food safety,” Current Issues in Intestinal Microbiology, vol. 4, no. 2, pp. 43–51, 2003. View at Scopus
  3. S. Rochefeuille, C. Jimenez, S. Tingry, P. Seta, and J. P. Desfours, “Mixed Langmuir-Blodgett monolayers containing carboxylic ionophores. Application to Na+ and Ca2+ ISFET-based sensors,” Materials Science and Engineering C, vol. 21, no. 1-2, pp. 43–46, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Gabrielli, P. Hemery, P. Letellier et al., “Investigation of ion-selective electrodes with neutral ionophores and ionic sites by EIS. II. Application to K+ detection,” Journal of Electroanalytical Chemistry, vol. 570, no. 2, pp. 291–304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Dobler, “Natural cation-binding agents,” in Comprehensive Supramolecular Chemistry: Molecular Recognition: Receptors for Cationic Guests, G. W. Gokel, Ed., vol. 1, pp. 267–313, Pergamon, New York, NY, USA, 2004.
  6. H. H. Mollenhauer, D. J. Morre, and L. D. Rowe, “Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity,” Biochimica et Biophysica Acta, vol. 1031, no. 2, pp. 225–246, 1990. View at Publisher · View at Google Scholar · View at Scopus
  7. B. C. Pressman, Antibiotics and Their Complexes, Marcel Dekker, New York, 1985.
  8. L. F. Lindoy, “Outer-sphere and inner-sphere complexation of cations by the natural ionophore lasalocid A,” Coordination Chemistry Reviews, vol. 148, pp. 349–368, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Inabayashi, S. Miyauchi, N. Kamo, and T. Jin, “Conductance change in phospholipid bilayer membrane by an electroneutral ionophore, monensin,” Biochemistry, vol. 34, no. 10, pp. 3455–3460, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Tsukube, K. Takagi, T. Higashiyama, T. Iwachido, and N. Hayama, “Biomimetic membrane transport: interesting ionophore functions of naturally occurring polyether antibiotics toward unusual metal cations and amino acid ester salts,” Inorganic Chemistry, vol. 33, no. 13, pp. 2984–2987, 1994. View at Scopus
  11. S. Ahmed and I. R. Booth, “Quantitative measurements of the proton-motive force and its relation to steady state lactose accumulation in Escherichia coli,” Biochemical Journal, vol. 200, no. 3, pp. 573–581, 1981. View at Scopus
  12. M. Kuhn and H. D. King, Belgian Patent, 839355, 1976.
  13. M. Allèaume, B. Busetta, C. Farges, P. Gachon, A. Kergomard, and T. Staron, “X-Ray structure of alborixin, a new antibiotic ionophore,” Journal of the Chemical Society, Chemical Communications, no. 11, pp. 411–412, 1975. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Van Roey, W. L. Duax, P. D. Strong, and G. D. Smith, Israel Journal of Chemistry, vol. 24, p. 283, 1984.
  15. P. Gachon, C. Farges, and A. Kergomard, “Alborixin, a new antibiotic ionophore: isolation, structure, physical and chemical properties,” Journal of Antibiotics, vol. 29, no. 6, pp. 603–610, 1976. View at Scopus
  16. Y. Kusakabe, S. Mitsuoka, Y. Omuro, and A. Seino, “Antibiotic No. 6016, a polyether antibiotic,” Journal of Antibiotics, vol. 33, no. 12, pp. 1437–1442, 1980. View at Scopus
  17. N. Otake, T. Ogita, H. Nakayama, H. Miyamae, S. Sato, and Y. Saito, “X-Ray crystal structure of the thallium salt of antibiotic-6016, a new polyether ionophore,” Journal of the Chemical Society, Chemical Communications, no. 20, pp. 875–876, 1978. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. Gale, C. E. Higgens, and M. M. Hoehn, US Patent, 3923823, 1975.
  19. G. D. Smith and W. L. Duax, “Crystal and molecular structure of the calcium ion complex of A23187,” Journal of the American Chemical Society, vol. 98, no. 6, pp. 1578–1580, 1976.
  20. M. Alleaume and Y. Barrans, “Crystal structure of the magnesium complex of calcimycin,” Canadian Journal of Chemistry, vol. 63, no. 12, pp. 3482–3485, 1985. View at Scopus
  21. M. Akkurt, A. Melhaoui, T. Ben Hadda, M. Mimouni, S. Öztürk Yíldírím, and V. McKeec, “Synthesis and crystal structure of the bis-calcimycin anion-Ni2+ complex,” Arkivoc, vol. 2008, no. 11, pp. 154–164, 2008. View at Scopus
  22. S. Vila, I. Canet, J. Guyot, G. Jeminet, and L. Toupet, “Unusual structure of the dimeric 4-bromocalcimycin-Zn2+ complex,” Chemical Communications, vol. 9, no. 4, pp. 516–517, 2003. View at Scopus
  23. G. Grenier, J. Van Sande, D. Glick, and J. E. Dumont, “Effect of ionophore A23187 on thyroid secretion,” FEBS Letters, vol. 49, no. 1, pp. 96–99, 1974. View at Publisher · View at Google Scholar · View at Scopus
  24. R. C. Karl, W. S. Zawalich, J. A. Ferrendelli, and F. M. Matschinsky, “The role of Ca2+ and cyclic adenosine 3 : 5 monophosphate in insulin release induced in vitro by the divalent cation ionophore A23187,” The Journal of Biological Chemistry, vol. 250, no. 12, pp. 4575–4579, 1975. View at Scopus
  25. G. D. Case, J. M. Vanderkooi, and A. Scarpa, “Physical properties of biological membranes determined by the fluorescence of the calcium ionophore A23187,” Archives of Biochemistry and Biophysics, vol. 162, no. 1, pp. 174–185, 1974. View at Scopus
  26. J. Guyot, G. Jeminet, M. Prudhomme, M. Sancelme, and R. Meiniel, “Interaction of the calcium ionophore A.23187 (calcimycin) with Bacillus cereus and Escherichia coli,” Letters in Applied Microbiology, vol. 16, no. 4, pp. 192–195, 1993. View at Scopus
  27. K. D. Klika, J. P. Haansuu, V. V. Ovcharenko et al., “Frankiamide: a structural revision to demethyl (C-11) cezomycin,” Zeitschrift für Naturforschung, vol. 58, no. 12, pp. 1210–1215, 2003. View at Scopus
  28. J. W. Westley, C. M. Liu, and J. F. Blount, “Isolation and characterization of a novel polyether antibiotic of the pyrrolether class, antibiotic X-14885A,” Journal of Antibiotics, vol. 36, no. 10, pp. 1275–1278, 1983. View at Scopus
  29. T. Sakurai, K. Kobayashi, G. Nakamura, and K. Isono, “Structure of the thallium salt of cationomycin,” Acta Crystallographica Section B, vol. 38, no. 9, pp. 2471–2473, 1982.
  30. M. Ubukata, Y. Hamazaki, and K. Isono, “Chemical modification of cationomycin and its structure-activity relationship,” Agricultural and Biological Chemistry, vol. 50, no. 5, pp. 1153–1160, 1986. View at Scopus
  31. M. Ubukata, T. Akama, and K. Isono, “Aromatic side chain analogs of cationomycin and their biological activities,” Agricultural and Biological Chemistry, vol. 52, no. 7, pp. 1637–1641, 1988. View at Scopus
  32. A. M. Delort, G. Jeminet, S. Sareth, and F. G. Riddle, “Ionophore properties of cationomycin in large unilamellar vesicles studied by 23Na- and 39K-NMR,” Chemical and Pharmaceutical Bulletin, vol. 46, no. 10, pp. 1618–1620, 1998. View at Scopus
  33. J. R. Oscarson, J. Bordner, W. D. Celmer et al., “Endusamycin, a novel polycyclic ether antibiotic produced by a strain of Streptomyces endus subsp. aureus,” Journal of Antibiotics, vol. 42, no. 1, pp. 37–48, 1989. View at Scopus
  34. T. Fehr, H. D. King, and M. Kuhn, “Mutalomycin, a new polyether antibiotic. Taxonomy, fermentation, isolation and characterization,” Journal of Antibiotics, vol. 30, no. 11, pp. 903–907, 1977. View at Scopus
  35. T. Fehr, M. Kuhn, H. R. Loosli, M. Ponelle, J. J. Boelsterli, and M. D. Walkinshaw, “2-Epimutalomycin and 28-epimutalomycin, two new polyether antibiotics from Streptomyces mutabilis. Derivatization of mutalomycin and the structure elucidation of two minor metabolites,” Journal of Antibiotics, vol. 42, no. 6, pp. 897–902, 1989. View at Scopus
  36. C. M. Liu and T. E. Hermann, “Characterization of ionomycin as a calcium ionophore,” The Journal of Biological Chemistry, vol. 253, no. 17, pp. 5892–5894, 1978. View at Scopus
  37. Z. Gao, Y. Li, J. P. Cooksey et al., “A synthesis of an ionomycin calcium complex,” Angewandte Chemie—International Edition, vol. 48, no. 27, pp. 5022–5025, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. W. C. Liu, D. Smith-Slusarczyk, G. Astle, W. H. Trejo, W. E. Brown, and E. Meyers, “Ionomycin, a new polyether antibiotic,” Journal of Antibiotics, vol. 31, no. 9, pp. 815–819, 1978.
  39. N. Tsuji, K. Nagashima, M. Kobayashi et al., “Two new antibiotics, A 218 and K 41 isolation and characterization,” Journal of Antibiotics, vol. 29, no. 1, pp. 10–14, 1976.
  40. M. Shiro, H. Nakai, K. Nagashima, and N. Tsuji, “X-Ray determination of the structure of the polyether antibiotic K-41,” Journal of the Chemical Society, Chemical Communications, no. 16, pp. 682–683, 1978. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Otoguro, A. Ishiyama, H. Ui et al., “In vitro and in vivo antimalarial activities of the monoglycoside polyether antibiotic, K-41 against drug resistant strains of Plasmodia,” Journal of Antibiotics, vol. 55, no. 9, pp. 832–834, 2002. View at Scopus
  42. Y. Takahashi, H. Nakamura, R. Ogata et al., “Kijimicin, a polyether antibiotic,” Journal of Antibiotics, vol. 43, no. 4, pp. 441–443, 1990. View at Scopus
  43. T. Yamauchi, M. Nakamura, H. Honma, M. Ikeda, K. Kawashima, and T. Ohno, “Mechanistic effects of Kijimicin on inhibition of human immunodeficiency virus replication,” Molecular and Cellular Biochemistry, vol. 119, no. 1-2, pp. 35–41, 1993. View at Scopus
  44. J. Berger, A. I. Rachlin, W. E. Scott, L. H. Sternbach, and M. W. Goldberg, “The isolation of three new crystalline antibiotics from Streptomyces,” Journal of the American Chemical Society, vol. 73, no. 11, pp. 5295–5298, 1951. View at Scopus
  45. S. M. Johnson, J. Herrin, S. J. Liu, and I. C. Paul, “Crystal structure of a barium complex of antibiotic X-537A, Ba(C34H53O8)2·H2O,” Journal of the Chemical Society D, no. 2, pp. 72–73, 1970. View at Publisher · View at Google Scholar · View at Scopus
  46. I. H. Suh, K. Aoki, and H. Yamazaki, “Crystal structure of a silver salt of the antibiotic lasalocid A: a dimer having an exact 2-fold symmetry,” Inorganic Chemistry, vol. 28, no. 2, pp. 358–362, 1989. View at Scopus
  47. M. Akkurt, S. Öztürk Yildirim, F. Z. Khardli, M. Mimouni, V. McKee, and T. Ben Haddab, “Crystal structure of a new polymeric thallium-lasalocid complex: iasalocide anion-thallium(I) containing aryl-Tl interactions,” Arkivoc, vol. 2008, no. 15, pp. 121–132, 2008. View at Scopus
  48. J. W. Westley, W. Benz, and J. Donahue, “Biosynthesis of lasalocid. III Isolation and structure determination of four homologs of lasalocid A,” Journal of Antibiotics, vol. 27, no. 10, pp. 744–753, 1974. View at Scopus
  49. D. A. Coffen and D. A. Katonak, “Chemical degradation of lasalocid: (A) The Mannich reaction (B) Bayer-Villiger oxidation of the retro-aldol ketone,” Helvetica Chimica Acta, vol. 64, no. 5, pp. 1645–1652, 1981.
  50. A. Huczyński, I. Paluch, M. Ratajczak-Sitarz et al., “Spectroscopic studies, crystal structures and antimicrobial activities of a new lasalocid 1-naphthylmethyl ester,” Journal of Molecular Structure, vol. 891, no. 1–3, pp. 481–490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Huczyński, I. Paluch, M. Ratajczak-Sitarz, A. Katrusiak, B. Brzezinski, and F. Bartl, “Structural and spectroscopic studies of a new 2-naphthylmethyl ester of lasalocid acid,” Journal of Molecular Structure, vol. 918, no. 1–3, pp. 108–115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Huczyński, T. Pospieszny, R. Wawrzyn et al., “Structural and spectroscopic studies of new o-, m- and p-nitrobenzyl esters of lasalocid acid,” Journal of Molecular Structure, vol. 877, no. 1–3, pp. 105–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Huczyński, M. Ratajczak-Sitarz, A. Katrusiak, and B. Brzezinski, “X-ray, spectroscopic and semiempirical investigation of the structure of lasalocid 6-bromohexyl ester and its complexes with alkali metal cations,” Journal of Molecular Structure, vol. 998, no. 1–3, pp. 206–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Huczyński, J. Janczak, J. Rutkowski et al., “Lasalocid acid as a lipophilic carrier ionophore for allylamine: spectroscopic, crystallographic and microbiological investigation,” Journal of Molecular Structure, vol. 936, no. 1–3, pp. 92–98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Huczyński, J. Janczak, J. Stefańska, J. Rutkowski, and B. Brzezinski, “X-ray, spectroscopic and antibacterial activity studies of the 1 : 1 complex of lasalocid acid with 1,1,3,3-tetramethylguanidine,” Journal of Molecular Structure, vol. 977, no. 1–3, pp. 51–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Huczyński, T. Pospieszny, M. Ratajczak-Sitarz, A. Katrusiak, and B. Brzezinski, “Structural and spectroscopic studies of the 1 : 1 complex of lasalocid acid with 1,5,7-triazabicyclo[4.4.0]dec-5-ene,” Journal of Molecular Structure, vol. 875, no. 1–3, pp. 501–508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Huczynski, J. Rutkowski, J. Wietrzyk et al., “X-Ray crystallographic, FT-IR and NMR studies as well as anticancer and antibacterial activity of the salt formed between ionophor antibiotic Lasalocid acid and amines,” Journal of Molecular Structure, vol. 1032, pp. 69–77, 2012. View at Publisher · View at Google Scholar
  58. E. J. Tynan, T. H. Nelson, R. A. Davies, and W. C. Wernau, “The production of semduramicin by direct fermentation,” Journal of Antibiotics, vol. 45, no. 5, pp. 813–815, 1992. View at Scopus
  59. A. P. Ricketts, E. A. Glazer, T. T. Migaki, and J. A. Olson, “Anticoccidial efficacy of semduramicin in battery studies with laboratory isolates of coccidia,” Poultry Science, vol. 71, no. 1, pp. 98–103, 1992. View at Scopus
  60. J. P. Dirlam, J. Bordner, S. P. Chang et al., “The isolation and structure of CP-120,509, a new polyether antibiotic related to semduramicin and produced by mutants of Actinomadura roseorufa,” Journal of Antibiotics, vol. 45, no. 9, pp. 1544–1548, 1992. View at Scopus
  61. D. H. Davies, E. W. Snape, P. J. Suter, T. J. King, and C. P. Falshaw, “Structure of antibiotic M139603; x-ray crystal structure of the 4-bromo-3,5-dinitrobenzoyl derivative,” Journal of the Chemical Society, Chemical Communications, no. 20, pp. 1073–1074, 1981. View at Scopus
  62. C. J. Newbold, R. J. Wallace, N. D. Watt, and A. J. Richardson, “Effect of the novel ionophore tetronasin (ICI 139603) on ruminal microorganisms,” Applied and Environmental Microbiology, vol. 54, no. 2, pp. 544–547, 1988. View at Scopus
  63. H. A. Brooks, D. Gardner, J. P. Pyser, and T. J. King, “The structure and absolute stereochemistry of zincophorin (antibiotic M144255): a monobasic carboxylic acid ionophore having a remarkable specificity for divalent cations,” Journal of Antibiotics, vol. 37, no. 11, pp. 1501–1504, 1984. View at Scopus
  64. J. P. Dirlam, A. M. Belton, S. P. Shang et al., “CP-78,545, a new monocarboxylic acid ionophore antibiotic related to zincophorin and produced by a Streptomyces,” Journal of Antibiotics, vol. 42, no. 8, pp. 1213–1220, 1989. View at Scopus
  65. H. Kinashi, N. Otake, and H. Yonehara, “The structure of salinomycin, a new member of the polyether antibiotics,” Tetrahedron Letters, vol. 49, pp. 4955–4958, 1973. View at Scopus
  66. J. W. Westley, J. F. Blount, R. H. Evans, and C. M. Liu, “C-17 epimers of deoxy-(O-8)-salinomycin from Streptomyces albus (ATCC 21838),” Journal of Antibiotics, vol. 30, no. 7, pp. 610–612, 1977. View at Scopus
  67. Y. Miyazaki, A. Shibata, T. Yahagi et al., Japanese Patent, 61247398, 1986.
  68. E. F. Paulus and L. Vértesy, “Crystal structure of the antibiotic SY-1 (20-deoxy-salinomycin): sodium 2-(6-[2-(5-ethyl-5-hydroxy-6-methyl-tetrahydro-pyran-2-yl)-2,10,12-trimethyl-1, 6,8-trioxa-dispiro[4.1.5.3]pentadec-13-en-9-yl]-2-hydroxy-1,3-dimethyl-4-oxo- heptyl-5-methyl-tetrahydro-pyran-2-yl)-butyrate—methanol solvate (1 : 0.69), C42H69NaO10·0.69CH3OH,” Zeitschrift für Kristallographie, vol. 218, no. 4, pp. 575–577, 2003. View at Scopus
  69. E. F. Paulus and L. Vértesy, “Crystal structure of 2-(6-[2-(5-ethyl-5-hydroxy-6-methyl-tetrahydro-pyran2- yl)-15-oxo-2,10,12-trimethyl-1,6,8-trioxa-dispiro[4.1.5.3]pentadec-13-en-9-yl] -2-hydroxy-1,3-dimethyl-4-oxo-heptyl-5-methyl-tetrahydro-pyran-2-yl)-butyrate sodium, Na(C42H67O11), SY-9—antibiotic 20-oxo-salinomycin,” Zeitschrift für Kristallographie, vol. 219, no. 2, pp. 184–186, 2004. View at Scopus
  70. A. Huczyński, J. Janczak, M. Antoszczak, J. Stefanska, and B. Brzezinski, “X-ray, FT-IR, NMR and PM5 structural studies and antibacterial activity of unexpectedly stable salinomycin-benzotriazole intermediate ester,” Journal of Molecular Structure, vol. 1022, pp. 197–203, 2012.
  71. A. Huczyński, J. Janczak, J. Stefanska, M. Antoszczak, and B. Brzezinski, “Synthesis and antimicrobial activity of amide derivatives of polyether antibiotic—salinomycin,” Bioorganic and Medicinal Chemistry Letters, vol. 22, no. 14, pp. 4697–4702, 2012.
  72. M. Mitani, T. Yamanishi, and Y. Miyazaki, “Salinomycin: a new monovalent cation ionophore,” Biochemical and Biophysical Research Communications, vol. 66, no. 4, pp. 1231–1236, 1975. View at Scopus
  73. Y. Myiazaki, M. Shibuya, H. Sugawara et al., “Salinomycin, a new polyether antibiotic,” Journal of Antibiotics, vol. 27, no. 11, pp. 814–821, 1974.
  74. A. Huczyński, “Salinomycin—a new cancer drug candidate,” Chemical Biology and Drug Design, vol. 79, no. 3, pp. 235–238, 2012.
  75. A. Agtarap, J. W. Chamberlin, M. Pinkerton, and L. Steinrauf, “The structure of monensic acid, A new biologically active compound,” Journal of the American Chemical Society, vol. 89, no. 22, pp. 5737–5739, 1967. View at Scopus
  76. A. Huczyński, M. Ratajczak-Sitarz, A. Katrusiak, and B. Brzezinski, “Molecular structure of the 1 : 1 inclusion complex of monensin A sodium salt with acetonitrile,” Journal of Molecular Structure, vol. 832, no. 1–3, pp. 84–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Huczyński, J. Janczak, D. Łowicki, and B. Brzezinski, “Monensin a acid complexes as a model of electrogenic transport of sodium cation,” Biochimica et Biophysica Acta, no. 9, pp. 2108–2119, 1818.
  78. A. Huczyński, M. Ratajczak-Sitarz, A. Katrusiak, and B. Brzezinski, “Molecular structure of the 1 : 1 inclusion complex of monensin A lithium salt with acetonitrile,” Journal of Molecular Structure, vol. 871, no. 1–3, pp. 92–97, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Huczyński, M. Ratajczak-Sitarz, A. Katrusiak, and B. Brzezinski, “Molecular structure of rubidium six-coordinated dihydrate complex with monensin A,” Journal of Molecular Structure, vol. 888, no. 1–3, pp. 224–229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. I. N. Pantcheva, R. Zhorova, M. Mitewa, S. Simova, H. Mayer-Figge, and W. S. Sheldrick, “First solid state alkaline-earth complexes of monensic acid A (MonH): crystal structure of [M(Mon)2(H2O)2] (M = Mg, Ca), spectral properties and cytotoxicity against aerobic Gram-positive bacteria,” BioMetals, vol. 23, no. 1, pp. 59–70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. I. N. Pantcheva, J. Ivanova, R. Zhorova et al., “Nickel(II) and zinc(II) dimonensinates: single crystal X-ray structure, spectral properties and bactericidal activity,” Inorganica Chimica Acta, vol. 363, no. 8, pp. 1879–1886, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. P. Dorkov, I. N. Pantcheva, W. S. Sheldrick, H. Mayer-Figge, R. Petrova, and M. Mitewa, “Synthesis, structure and antimicrobial activity of manganese(II) and cobalt(II) complexes of the polyether ionophore antibiotic Sodium Monensin A,” Journal of Inorganic Biochemistry, vol. 102, no. 1, pp. 26–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. I. N. Pantcheva, P. Dorkov, V. N. Atanasov et al., “Crystal structure and properties of the copper(II) complex of sodium monensin A,” Journal of Inorganic Biochemistry, vol. 103, no. 10, pp. 1419–1424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Ivanova, I. N. Pantcheva, M. Mitewa, S. Simova, H. Mayer-Figge, and W. S. Sheldrick, “Crystal structures and spectral properties of new Cd(II) and Hg(II) complexes of monensic acid with different coordination modes of the ligand,” Central European Journal of Chemistry, vol. 8, no. 4, pp. 852–860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. I. N. Pantcheva, M. I. Mitewa, W. S. Sheldrick, I. M. Oppel, R. Zhorova, and P. Dorkov, “First divalent metal complexes of the polyether ionophore monensin A: x-ray structures of [Co(Mon)2(H2O)2] and [Mn(Mon)2(H2O)2] and their bactericidal properties,” Current Drug Discovery Technologies, vol. 5, no. 2, pp. 154–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Huczyński, D. Łowicki, M. Ratajczak-Sitarz, A. Katrusiak, and B. Brzezinski, “Structural investigation of a new complex of N-allylamide of Monensin A with strontium perchlorate using X-ray, FT-IR, ESI MS and semiempirical methods,” Journal of Molecular Structure, vol. 995, no. 1–3, pp. 20–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Huczyński, J. Janczak, and B. Brzezinski, “Crystal structure and FT-IR study of aqualithium 1-naphthylmethyl ester of monensin A perchlorate,” Journal of Molecular Structure, vol. 985, no. 1, pp. 70–74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Huczyński, M. Ratajczak-Sitarz, J. Stefańska, A. Katrusiak, B. Brzezinski, and F. Bartl, “Reinvestigation of the structure of monensin A phenylurethane sodium salt based on X-ray crystallographic and spectroscopic studies, and its activity against hospital strains of methicillin-resistant S. epidermidis and S. aureus,” Journal of Antibiotics, vol. 64, no. 3, pp. 249–256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Huczyński, J. Stefańska, P. Przybylski, B. Brzezinski, and F. Bartl, “Synthesis and antimicrobial properties of Monensin A esters,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 8, pp. 2585–2589, 2008.
  90. A. Iacoangeli, G. Melucci-Vigo, and G. Risuleo, “The ionophore monensin inhibits mouse polyomavirus DNA replication and destabilizes viral early mRNAs,” Biochimie, vol. 82, no. 1, pp. 35–39, 2000. View at Publisher · View at Google Scholar · View at Scopus
  91. Y. Kusakabe, T. Mizuno, and S. Kawabata, “Ferensimycins A and B, two polyether antibiotics,” Journal of Antibiotics, vol. 35, no. 9, pp. 1119–1129, 1982. View at Scopus
  92. J. P. Dirlam, J. Bordner, W. P. Cullen, M. T. Jefferson, and L. Presseau-Linabury, “The structure of CP-96,797, polyether antibiotic related to K-41A and produced by Streptomyces sp,” Journal of Antibiotics, vol. 45, no. 7, pp. 1187–1189, 1992. View at Scopus
  93. S. Funayama and S. Nozoe, “Isolation and structure of a new polyether antibiotic, octacyclomycin,” Journal of Antibiotics, vol. 45, no. 10, pp. 1686–1691, 1992. View at Scopus
  94. J. P. Dirlam, W. P. Cullen, L. H. Huang et al., “CP-91,243 and CP-91,244, novel diglycosine polyether antibiotics related to UK-58,852 and produced by mutants of Actinomadura roseorufa,” Journal of Antibiotics, vol. 44, no. 11, pp. 1262–1266, 1991. View at Scopus
  95. R. S. Wehbie, C. Runsheng, and H. A. Lardy, “The antibiotic W341C, its ion transport properties and inhibitory effects on mitochondrial substrate oxidation,” Journal of Antibiotics, vol. 40, no. 6, pp. 887–893, 1987. View at Scopus
  96. F. Kitame, K. Utsushikawa, and T. Kohama, “Laidlomycin, a new antimycoplasmal polyether antibiotic,” Journal of Antibiotics, vol. 27, no. 11, pp. 884–888, 1974. View at Scopus
  97. J. P. Dirlam, A. M. Belton, J. Bordner et al., “CP-84,657, a potent polyether anticoccidial related to portmicin and produced by Actinomadura sp,” Journal of Antibiotics, vol. 43, no. 6, pp. 668–679, 1990. View at Scopus
  98. P. Gachon, A. Kergomard, T. Staron, and C. Esteve, “Grisorixin, an ionophorous antibiotic of the nigericin group. I. Fermentation, isolation, biological properties and structure,” Journal of Antibiotics, vol. 28, no. 5, pp. 345–350, 1975. View at Scopus
  99. M. Alleaume and D. Hickel, “The crystal structure of grisorixin silver salt,” Journal of the Chemical Society D, no. 21, pp. 1422–1423, 1970. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Alleaume and D. Hickel, “Crystal structure of the thallium salt of the antibiotic grisorixin,” Journal of the Chemical Society, Chemical Communications, pp. 175–176, 1972. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Mouslim, A. Cuer, L. David, and J. C. Tabet, “Epigrisorixin, a new polyether carboxylic antibiotic,” Journal of Antibiotics, vol. 46, no. 1, pp. 201–203, 1993. View at Scopus
  102. W. P. Cullen, W. D. Celmer, L. R. Chappel et al., “CP-54,883 a novel chlorine-containing polyether antibiotic produced by a new species of Actinomadura: taxonomy of the producing culture, fermentation, physico-chemical and biological properties of the antibiotic,” Journal of Antibiotics, vol. 40, no. 11, pp. 1490–1495, 1987. View at Scopus
  103. J. Bordner, P. C. Watts, and E. B. Whipple, “Structure of the natural antibiotic ionophore CP-54,883,” Journal of Antibiotics, vol. 40, no. 11, pp. 1496–1505, 1987. View at Scopus
  104. M. Hatsu, T. Sasaki, S. Miyadoh et al., “SF2487, a new polyether antibiotic produced by Actinomadura,” Journal of Antibiotics, vol. 43, no. 3, pp. 259–266, 1990. View at Scopus
  105. C. M. Liu, T. E. Hermann, and A. Downey, “Novel polyether antibiotics X-14868A, B, C, and D produced by a Nocardia. Discovery, fermentation, biological as well as ionophore properties and taxonomy of the producing culture,” Journal of Antibiotics, vol. 36, no. 4, pp. 343–350, 1983. View at Scopus
  106. J. P. Dirlam, L. Presseau-Linabury, and D. A. Koss, “The structure of CP-80,219, a new polyether antibiotic related to dianemycin,” Journal of Antibiotics, vol. 43, no. 6, pp. 727–730, 1990. View at Scopus
  107. H. Nakayama, H. Seto, and N. Otake, “Studies on the ionophorous antibiotics. XXVIII. Moyukamycin, a new glycosylated polyether antibiotic,” Journal of Antibiotics, vol. 38, no. 10, pp. 1433–1436, 1985. View at Scopus
  108. J. W. Westley, Chao-Min Liu, and L. H. Sello, “Isolation and characterization of antibiotic X-14931A, the naturally occurring 19-deoxyaglycone of dianemycin,” Journal of Antibiotics, vol. 37, no. 7, pp. 813–815, 1984. View at Scopus
  109. J. W. Westley, C. M. Liu, and J. F. Blount, “Isolation and characterization of three novel polyether antibiotics and three novel actinomycins as cometabolites of the same Streptomyces sp. X-14873, ATCC 31679,” Journal of Antibiotics, vol. 39, no. 12, pp. 1704–1711, 1986. View at Scopus
  110. C. M. Liu, J. W. Westley, and T. E. Hermann, “Novel polyether antibiotics X-14873A, G and H produced by a Streptomyces: taxonomy of the producing culture, fermentation, biological and ionophorous properties of the antibiotics,” Journal of Antibiotics, vol. 39, no. 12, pp. 1712–1718, 1986. View at Scopus
  111. C. Keller-Juslen, H. D. King, and M. Kuhn, “Noboritomycins A and B, new polyether antibiotics,” Journal of Antibiotics, vol. 31, no. 9, pp. 820–828, 1978. View at Scopus
  112. C. Liu, T. E. Hermann, and T. B. La Prosser, “X-14766A, a halogen containing polyether antibiotic produced by Streptomyces malachitofuscus subsp. downeyi ATCC 31547. Discovery, fermentation, biological properties and taxonomy of the producing culture,” Journal of Antibiotics, vol. 34, no. 2, pp. 133–138, 1981. View at Scopus
  113. J. W. Westley, R. H. Evans, and L. H. Sello, “Isolation and characterization of the first halogen containing polyether antibiotic X-14766A, a product of Streptomyces malachitofuscus subsp. downeyi,” Journal of Antibiotics, vol. 34, no. 2, pp. 139–147, 1981. View at Scopus
  114. J. P. Dirlam, A. M. Belton, J. Bordner et al., “CP-82,009, a potent polyether anticoccidial related to septamycin and produced by Actinonladura sp,” Journal of Antibiotics, vol. 45, no. 3, pp. 331–340, 1992. View at Scopus
  115. L. David, H. L. Ayala, and J. C. Tabet, “Abierixin, a new polyether antibiotic. Production, structural determination and biological activities,” Journal of Antibiotics, vol. 38, no. 12, pp. 1655–1663, 1985. View at Scopus
  116. S. H. Larsen, L. V. D. Boeck, F. P. Mertz, J. W. Paschal, and J. L. Occolowitz, “16-Deethylindanomycin (A83094A), a novel pyrrole-ether antibiotic produced by a strain of Streptomyces setonii. Taxonomy, fermentation, isolation and characterization,” Journal of Antibiotics, vol. 41, no. 9, pp. 1170–1177, 1988. View at Scopus
  117. C. M. Liu, T. E. Hermann, and M. Liu, “X-14547A, a new ionophorous antibiotic produced by Streptomyces antibioticus NRRL 8167. Discovery, fermentation, biological properties and taxonomy of the producing culture,” Journal of Antibiotics, vol. 32, no. 2, pp. 95–99, 1979. View at Scopus
  118. J. W. Westley, R. H. Evans, and L. H. Sello, “Isolation and characterization of antibiotic X-14547A, a novel monocarboxylic acid ionophore produced by Streptomyces antibioticus NRRL 8167,” Journal of Antibiotics, vol. 32, no. 2, pp. 100–107, 1979. View at Scopus