About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 162907, 7 pages
http://dx.doi.org/10.1155/2013/162907
Research Article

Pyrolytic and Kinetic Analysis of Two Coastal Plant Species: Artemisia annua and Chenopodium glaucum

1Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Laishan District, Yantai 264003, China
2Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Science, Tianjin Normal University, Tianjin 300387, China
3Tianjin Aquatic Animal Infectious Disease Control and Prevention Center, Tianjin 300221, China

Received 13 July 2013; Revised 29 September 2013; Accepted 22 October 2013

Academic Editor: Wei Zhang

Copyright © 2013 Lili Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The large amount of coastal plant species available makes them ideal candidates for energy production. In this study, thermogravimetric analysis was used to evaluate the fuel properties of two coastal plant species, and the distributed activation energy model (DAEM) was employed in kinetic analysis. The major mass loss due to devolatilization started at 154 and 162°C at the heating rate of 10°C min−1 for Artemisia annua and Chenopodium glaucum, respectively. The results showed that the average activation energies of Artemisia annua and Chenopodium glaucum were 169.69 and 170.48 kJ mol−1, respectively. Furthermore, the activation energy changed while the conversion rate increased, and the frequency factor decreased greatly while the activation energy decreased. The results also indicated that the devolatilization of the two coastal plant species underwent a set of first-order reactions and could be expressed by the DAEM. Additionally, a simplified mathematical model was proposed to facilitate the prediction of devolatilization curves.