About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 162907, 7 pages
http://dx.doi.org/10.1155/2013/162907
Research Article

Pyrolytic and Kinetic Analysis of Two Coastal Plant Species: Artemisia annua and Chenopodium glaucum

1Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Laishan District, Yantai 264003, China
2Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Science, Tianjin Normal University, Tianjin 300387, China
3Tianjin Aquatic Animal Infectious Disease Control and Prevention Center, Tianjin 300221, China

Received 13 July 2013; Revised 29 September 2013; Accepted 22 October 2013

Academic Editor: Wei Zhang

Copyright © 2013 Lili Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Mourant, Z. Wang, M. He et al., “Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil,” Fuel, vol. 90, no. 9, pp. 2915–2922, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. S. Lira, K. G. Santos, V. V. Murata, M. Gianesella, and M. A. S. Barrozo, “The use of nonlinearity measures in the estimation of kinetic parameters of sugarcane bagasse pyrolysis,” Chemical Engineering & Technology, vol. 33, no. 10, pp. 1699–1705, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Munir, S. S. Daood, W. Nimmo, A. M. Cunliffe, and B. M. Gibbs, “Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres,” Bioresource Technology, vol. 100, no. 3, pp. 1413–1418, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. D. K. Shen, S. Gu, B. Jin, and M. X. Fang, “Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods,” Bioresource Technology, vol. 102, no. 2, pp. 2047–2052, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Cai and R. Liu, “New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass,” Bioresource Technology, vol. 99, no. 8, pp. 2795–2799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Várhegyi, B. Bobály, E. Jakab, and H. Chen, “Thermogravimetric study of biomass pyrolysis kinetics: a distributed activation energy model with prediction tests,” Energy & Fuels, vol. 25, no. 1, pp. 24–32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Li, N. Zhao, X. Fu, M. Shao, and S. Qin, “Thermogravimetric and kinetic analysis of Spirulina wastes under nitrogen and air atmospheres,” Bioresource Technology, vol. 140, pp. 152–157, 2013.
  8. J. Giuntoli, S. Arvelakis, H. Spliethoff, W. De Jong, and A. H. M. Verkooijen, “Quantitative and kinetic thermogravimetric fourier transform infrared (TG-FTIR) study of pyrolysis of agricultural residues: influence of different pretreatments,” Energy & Fuels, vol. 23, no. 11, pp. 5695–5706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Miura and T. Maki, “A simple method for estimating f(E) and k0(E) in the distributed activation energy model,” Energy & Fuels, vol. 12, no. 5, pp. 864–869, 1998. View at Scopus
  10. A. Soria-Verdugo, N. Garcia-Hernando, L. Garcia-Gutierrez, and U. Ruiz-Rivas, “Analysis of biomass and sewage sludge devolatilization using the distributed activation energy model,” Energy Conversion and Management, vol. 65, pp. 239–244, 2013. View at Publisher · View at Google Scholar