About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 165198, 9 pages
http://dx.doi.org/10.1155/2013/165198
Research Article

Rhizobium pongamiae sp. nov. from Root Nodules of Pongamia pinnata

Department of Biotechnology, Indian Institute of Technology Guwahati, Assam 781 039, India

Received 27 April 2013; Accepted 6 June 2013

Academic Editor: Eldon R. Rene

Copyright © 2013 Vigya Kesari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Pongamia pinnata has an added advantage of N2-fixing ability and tolerance to stress conditions as compared with other biodiesel crops. It harbours “rhizobia” as an endophytic bacterial community on its root nodules. A gram-negative, nonmotile, fast-growing, rod-shaped, bacterial strain VKLR-01T was isolated from root nodules of Pongamia that grew optimal at 28°C, pH 7.0 in presence of 2% NaCl. Isolate VKLR-01 exhibits higher tolerance to the prevailing adverse conditions, for example, salt stress, elevated temperatures and alkalinity. Strain VKLR-01T has the major cellular fatty acid as C18:1  ω7c (65.92%). Strain VKLR-01T was found to be a nitrogen fixer using the acetylene reduction assay and PCR detection of a nifH gene. On the basis of phenotypic, phylogenetic distinctiveness and molecular data (16S rRNA, recA, and atpD gene sequences, G + C content, DNA-DNA hybridization etc.), strain VKLR-01T = (MTCC 10513T = MSCL 1015T) is considered to represent a novel species of the genus Rhizobium for which the name Rhizobium pongamiae sp. nov. is proposed. Rhizobium pongamiae may possess specific traits that can be transferred to other rhizobia through biotechnological tools and can be directly used as inoculants for reclamation of wasteland; hence, they are very important from both economic and environmental prospects.