About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 168438, 8 pages
http://dx.doi.org/10.1155/2013/168438
Research Article

Biomedical Applications of Fermenticin HV6b Isolated from Lactobacillus fermentum HV6b MTCC10770

Department of Biotechnology, Punjabi University, Patiala, Punjab 147002, India

Received 22 April 2013; Revised 2 July 2013; Accepted 10 July 2013

Academic Editor: Hakan Bermek

Copyright © 2013 Baljinder Kaur et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Madhivanan, K. Krupp, J. Hardin, C. Karat, J. D. Klausner, and A. L. Reingold, “Simple and inexpensive point-of-care tests improve diagnosis of vaginal infections in resource constrained settings,” Tropical Medicine and International Health, vol. 14, no. 6, pp. 703–708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. A. Eschenbach, “History and review of bacterial vaginosis,” American Journal of Obstetrics and Gynecology, vol. 169, no. 2, pp. 441–445, 1993. View at Scopus
  3. P. B. Mead, “Epidemiology of bacterial vaginosis,” American Journal of Obstetrics and Gynecology, vol. 169, no. 2, pp. 446–449, 1993. View at Scopus
  4. Z. D. Ling, Q. Chang, J. W. Lipton, C. W. Tong, T. M. Landers, and P. M. Carvey, “Combined toxicity of prenatal bacterial endotoxin exposure and postnatal 6-hydroxydopamine in the adult rat midbrain,” Neuroscience, vol. 124, no. 3, pp. 619–628, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. P. E. Hay, D. J. Morgan, C. A. Ison et al., “A longitudinal study of bacterial vaginosis during pregnancy,” British Journal of Obstetrics and Gynaecology, vol. 101, no. 12, pp. 1048–1053, 1994. View at Scopus
  6. H. Moi, R. Erkkola, F. Jerve et al., “Should male consorts of women with bacterial vaginosis be treated?” Genitourinary Medicine, vol. 65, no. 4, pp. 263–268, 1989. View at Scopus
  7. J. G. Lossick, “Treatment of sexually transmitted vaginosis/vaginitis,” Reviews of Infectious Diseases, vol. 12, supplement 6, pp. S665–S681, 1990. View at Scopus
  8. L. A. Simons, S. G. Amansec, and P. Conway, “Effect of Lactobacillus fermentum on serum lipids in subjects with elevated serum cholesterol,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 16, no. 8, pp. 531–535, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. C. Lauritano, M. Gabrielli, E. Scarpellini et al., “Antibiotic therapy in small intestinal bacterial overgrowth: rifaximin versus metronidazole,” European Review for Medical and Pharmacological Sciences, vol. 13, no. 2, pp. 111–116, 2009. View at Scopus
  10. C. Barbés and S. Boris, “Potential role of lactobacilli as prophylactic agents against genital pathogens,” AIDS Patient Care and STDs, vol. 13, no. 12, pp. 747–751, 1999. View at Scopus
  11. G. Famularo, M. Pieluigi, R. Coccia, P. Mastroiacovo, and C. De Simone, “Microecology, bacterial vaginosis and probiotics: perspectives for bacteriotherapy,” Medical Hypotheses, vol. 56, no. 4, pp. 421–430, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Maggi, P. Mastromarino, S. Macchia et al., “Technological and biological evaluation of tablets containing different strains of lactobacilli for vaginal administration,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 50, no. 3, pp. 389–395, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. K. E. Sutyak, R. A. Anderson, S. E. Dover et al., “Spermicidal activity of the safe natural antimicrobial peptide subtilosin,” Infectious Diseases in Obstetrics and Gynecology, vol. 2008, Article ID 540758, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Kumar, P. P. Balgir, B. Kaur, B. Mittu, and N. Garg, “Antimicrobial and spermicidal activity of native and recombinant pediocin CP2: a comparative evaluation,” Archives of Clinical and Microbiology, vol. 3, no. 3, 2012.
  15. P. Blackburn and B. P. Goldstein, “Applied microbiology,” Inc. International Patent Application WO 97/10801, 1995.
  16. T. H. Howell, J. P. Fiorellini, P. Blackburn, S. J. Projan, J. De La Harpe, and R. C. Williams, “The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs,” Journal of Clinical Periodontology, vol. 20, no. 5, pp. 335–339, 1993. View at Scopus
  17. P. McConville, “SmithKline Beecham,” Plc. International Patent Application WO 97: 06772, 1995.
  18. R. M. Peek, G. G. Miller, K. T. Tham et al., “Heightened inflammatory response and cytokine expression in vivo to cagA+ Helicobacter pylori strains,” Laboratory Investigation, vol. 73, no. 6, pp. 760–770, 1995. View at Scopus
  19. C. van Kraaij, W. M. de Vos, R. J. Siezen, and O. P. Kuipers, “Lantibiotics: biosynthesis, mode of action and applications,” Natural Product Reports, vol. 16, no. 5, pp. 575–587, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Farkas-Himsley, J. Freedman, S. E. Read, S. Asad, and M. Kardish, “Bacterial proteins cytotoxic to HIV-1-infected cells,” AIDS, vol. 5, no. 7, pp. 905–907, 1991. View at Scopus
  21. B. Kaur, P. P. Balgir, B. Mittu, A. Chauhan, B. Kumar, and N. Garg, “Isolation and In vitro characterization of anti-Gardnerella vaginalis bacteriocin producing Lactobacillus fermentum HV6b isolated from human vaginal ecosystem,” Internatinal Journal of Fundamental and Applied Sciences, vol. 1, no. 3, p. 41, 2012.
  22. R. Yang, M. C. Johnson, and B. Ray, “Novel method to extract large amounts of bacteriocins from lactic acid bacteria,” Applied and Environmental Microbiology, vol. 58, no. 10, pp. 3355–3359, 1992. View at Scopus
  23. L. M. Cintas, J. M. Rodriguez, M. F. Fernandez et al., “Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum,” Applied and Environmental Microbiology, vol. 61, no. 7, pp. 2643–2648, 1995. View at Scopus
  24. M. J. Pucci, E. R. Vedamuthu, B. S. Kunka, and P. A. Vandenbergh, “Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pediococcus acidilactici PAC 1.0,” Applied and Environmental Microbiology, vol. 54, no. 10, pp. 2349–2353, 1988. View at Scopus
  25. R. D. Wilson, P. M. Fricke, M. L. Leibfried-Rutledge, J. J. Rutledge, C. M. S. Penfield, and K. A. Weigel, “In vitro production of bovine embryos using sex-sorted sperm,” Theriogenology, vol. 65, no. 6, pp. 1007–1015, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Katla, K. Naterstad, M. Vancanneyt, J. Swings, and L. Axelsson, “Differences in susceptibility of Listeria monocytogenes strains to sakacin P, sakacin A, pediocin PA-1, and nisin,” Applied and Environmental Microbiology, vol. 69, no. 8, pp. 4431–4437, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Kumar, P. P. Balgir, B. Kaur, B. Mittu, and A. Chauhan, “In Vitro cytotoxicity of native and rec-pediocin CP2 against cancer cell lines: a comparative study,” Pharmaceutical Analytical Acta, vol. 3, p. 183, 2012.
  28. M. Thirabunyanon, “Biotherapy for and protection against gastrointestinal pathogenic infections via action of probiotic bacteria,” Maejo International Journal of Science and Technology, vol. 5, no. 1, pp. 108–128, 2011. View at Scopus
  29. C. T. Lohans and J. C. Vederas, “Development of class IIa bacteriocins as therapeutic agents,” International Journal of Microbiology, vol. 2012, Article ID 386410, 13 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. S. D. Todorov, M. Botes, S. T. Danova, and L. M. T. Dicks, “Probiotic properties of Lactococcus lactis ssp. lactis HV219, isolated from human vaginal secretions,” Journal of Applied Microbiology, vol. 103, no. 3, pp. 629–639, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. E. J. Ridgway and J. M. Brown, “Listeria monocytogenes meningitis in the acquired immune deficiency syndrome-limitations of conventional typing methods in tracing a foodborne source,” Journal of Infection, vol. 19, no. 2, pp. 167–171, 1989. View at Scopus
  32. S. Boris and C. Barbés, “Role played by lactobacilli in controlling the population of vaginal pathogens,” Microbes and Infection, vol. 2, no. 5, pp. 543–546, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. R. D. Joerger, “Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages,” Poultry Science, vol. 82, no. 4, pp. 640–647, 2003. View at Scopus
  34. K. V. R. Reddy, C. Aranha, S. M. Gupta, and R. D. Yedery, “Evaluation of antimicrobial peptide nisin as a safe vaginal contraceptive agent in rabbits: in vitro and in vivo studies,” Reproduction, vol. 128, no. 1, pp. 117–126, 2004. View at Scopus
  35. C. Vogt, Untersuchungen Uber Die Entwicklungsgeschichte Der Geburtshelferkroete (Alytes Obstetricians), Jent & Gassman, Solothurn, Switzerland, 1842.
  36. H. Farkas-Himsley and R. Cheung, “Bacterial proteinaceous products (Bacteriocins) as cytotoxic agents of neoplasia,” Cancer Research, vol. 36, no. 10, pp. 3561–3567, 1976. View at Scopus
  37. A. Jayawardene and H. Farkas-Himsley, “Vibriocin: a Bacteriocin from Vibrio comma II. Interaction with sensitive bacteria,” MicroBios, vol. 4, p. 325, 1969.
  38. M. Nomura, “Colicins and related bacteriocins,” Annual Review of Microbiology, vol. 21, pp. 257–284, 1967. View at Scopus
  39. L. Plant and P. Conway, “Association of Lactobacillus spp. with Peyer's patches in mice,” Clinical and Diagnostic Laboratory Immunology, vol. 8, no. 2, pp. 320–324, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. L. J. Plant and P. L. Conway, “Adjuvant properties and colonization potential of adhering and non-adhering Lactobacillus spp. following oral administration to mice,” FEMS Immunology and Medical Microbiology, vol. 34, no. 2, pp. 105–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Kang and P. L. Conway, “Characteristics of the adhesion of PCC® Lactobacillus fermentum VRI 003 to Peyer's patches,” FEMS Microbiology Letters, vol. 261, no. 1, pp. 19–24, 2006. View at Publisher · View at Google Scholar · View at Scopus