About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 168581, 8 pages
http://dx.doi.org/10.1155/2013/168581
Research Article

Recovery of Stored Aerobic Granular Sludge and Its Contaminants Removal Efficiency under Different Operation Conditions

1State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
2School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China

Received 17 May 2013; Accepted 27 June 2013

Academic Editor: José Manuel Domínguez González

Copyright © 2013 Zhiwei Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. S. Adav, D. J. Lee, K. Y. Show, and J. H. Tay, “Aerobic granular sludge: recent advances,” Biotechnology Advances, vol. 26, no. 5, pp. 411–423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Seviour, Z. G. Yuan, M. C. M. van Loosdrecht, and Y. M. Lin, “Aerobic sludge granulation: a tale of two polysaccharides,” Water Research, vol. 46, no. 15, pp. 4803–4813, 2012. View at Publisher · View at Google Scholar
  3. M. K. de Kreuk, J. J. Heijnen, and M. C. M. van Loosdrecht, “Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge,” Biotechnology and Bioengineering, vol. 90, no. 6, pp. 761–769, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. L. L. Liu, Z. P. Wang, J. Yao, X. J. Sun, and W. M. Cai, “Investigation on the properties and kinetics of glucose-fed aerobic granular sludge,” Enzyme and Microbial Technology, vol. 36, no. 2-3, pp. 307–313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Y. P. Moy, J. H. Tay, S. K. Toh, et al., “High organic loading influences the physical characteristics of aerobic sludge granules,” Letters in Applied Microbiology, vol. 34, no. 6, pp. 407–412, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. H. L. Jiang, S. T. L. Tay, and J. H. Tay, “Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading,” Applied Microbiology and Biotechnology, vol. 63, no. 5, pp. 602–608, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. X. F. Sun, C. Y. Liu, Y. Ma, et al., “Enhanced Cu(II) and Cr(VI) biosorption capacity on poly(ethylenimine) grafted aerobic granular sludge,” Colloids and Surfaces B, vol. 82, no. 2, pp. 456–462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Xu, Y. Liu, and J. H. Tay, “Effect of pH on nickel biosorption by aerobic granular sludge,” Bioresource Technology, vol. 97, no. 3, pp. 359–363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. L. M. M. de Bruin, M. K. de Kreuk, H. F. R. van der Roest, et al., “Aerobic granular sludge technology: an alternative to activated sludge?” Water Science and Technology, vol. 49, no. 11-12, pp. 1–9, 2004. View at Scopus
  10. Y. Liu and J. H. Tay, “The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge,” Water Research, vol. 36, no. 7, pp. 1653–1665, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. B. S. McSwain, R. L. Irvine, M. Hausner, and P. A. Wilderer, “Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge,” Applied and Environmental Microbiology, vol. 71, no. 2, pp. 1051–1057, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Wang, W. X. Shi, S. L. Yu, et al., “Formation of aerobic granules by Mg2+ and Al3+ augmentation in sequencing batch airlift reactor at low temperature,” Bioprocess and Biosystems Engineering, vol. 35, no. 7, pp. 1049–1055, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. D. W. Gao, X. J. Yuan, and H. Liang, “Reactivation performance of aerobic granules under different storage strategies,” Water Research, vol. 46, no. 10, pp. 3315–3322, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. R. L. Bao, S. L. Yu, W. X. Shi, X. Zhang, and Y. Wang, “Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor (SBAR) at low temperature,” Journal of Hazardous Materials, vol. 168, no. 2-3, pp. 1334–1340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. G. J. F. Smolders, J. M. Klop, M. C. M. van Loosdrecht, and J. J. Heijnen, “A metabolic model of the biological phosphorus removal process. I. Effect of the sludge retention time,” Biotechnology and Bioengineering, vol. 48, no. 3, pp. 222–233, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, USA, 20th edition, 1998.
  17. A. Laguna, A. Ouattara, R. O. Gonzalez et al., “A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge,” Water Science and Technology, vol. 40, no. 8, pp. 1–8, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Schwarzenbeck, R. Erley, and P. A. Wilderer, “Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter,” Water Science and Technology, vol. 49, no. 11-12, pp. 41–46, 2004. View at Scopus
  19. M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric method for determination of sugars and related substances,” Analytical Chemistry, vol. 28, no. 3, pp. 350–356, 1956. View at Scopus
  20. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Scopus
  21. S. T. L. Tay, V. Ivanov, S. Yi, W. Q. Zhuang, and J. H. Tay, “Presence of anaerobic Bacteroides in aerobically grown microbial granules,” Microbial Ecology, vol. 44, no. 3, pp. 278–285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Q. Liu, Y. Liu, and J. H. Tay, “The effects of extracellular polymeric substances on the formation and stability of biogranules,” Applied Microbiology and Biotechnology, vol. 65, no. 2, pp. 143–148, 2004. View at Scopus
  23. S. S. Adav, D. J. Lee, and J. Y. Lai, “Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances,” Applied Microbiology and Biotechnology, vol. 77, no. 1, pp. 175–182, 2007. View at Publisher · View at Google Scholar
  24. S. Wang, W. X. Shi, S. L. Yu, and X. S. Yi, “Rapid cultivation of aerobic granular sludge by bone glue augmentation and contaminant removal characteristics,” Water Science and Technology, vol. 67, no. 7, pp. 1627–1633, 2013. View at Publisher · View at Google Scholar
  25. L. Tijhuis, M. C. M. van Loosdrecht, and J. J. Heijnen, “Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors,” Biotechnology and Bioengineering, vol. 44, no. 5, pp. 595–608, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Mosquera-Corral, M. K. de Kreuk, J. J. Heijnen, and M. C. M. van Loosdrecht, “Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor,” Water Research, vol. 39, no. 12, pp. 2676–2686, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. M. Lin, Y. Liu, and J. H. Tay, “Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors,” Applied Microbiology and Biotechnology, vol. 62, no. 4, pp. 430–435, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J. W. Costerton, R. T. Irvin, and K. J. Cheng, “The bacterial glycocalyx in nature and disease,” Annual Review of Microbiology, vol. 35, pp. 299–324, 1981. View at Scopus
  29. J. H. Tay, Q. S. Liu, and Y. Liu, “The role of cellular polysaccharides in the formation and stability of aerobic granules,” Letters in Applied Microbiology, vol. 33, no. 3, pp. 222–226, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. M. K. de Kreuk, M. Pronk, and M. C. M. van Loosdrecht, “Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures,” Water Research, vol. 39, no. 18, pp. 4476–4484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. M. Zheng, H. Q. Yu, S. J. Liu, and X. Z. Liu, “Formation and instability of aerobic granules under high organic loading conditions,” Chemosphere, vol. 63, no. 10, pp. 1791–1800, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. C. M. López Vázquez, C. M. Hooijmans, D. Brdjanovic, H. J. Gijzen, and M. C. M. van Loosdrecht, “Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands,” Water Research, vol. 42, no. 10-11, pp. 2349–2360, 2008. View at Publisher · View at Google Scholar · View at Scopus