About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 170398, 12 pages
http://dx.doi.org/10.1155/2013/170398
Research Article

In Silico Prediction and In Vitro Characterization of Multifunctional Human RNase3

1Institute of Molecular and Cellular Biology, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
2Institute of Biotechnology, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
3Department of Computer Science and Engineering, National Taiwan Ocean University, 2 Pei Ning Road, Keelung 20224, Taiwan
4Department of Medical Science, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan

Received 31 October 2012; Accepted 2 December 2012

Academic Editor: Hao-Teng Chang

Copyright © 2013 Pei-Chun Lien et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Human ribonucleases A (hRNaseA) superfamily consists of thirteen members with high-structure similarities but exhibits divergent physiological functions other than RNase activity. Evolution of hRNaseA superfamily has gained novel functions which may be preserved in a unique region or domain to account for additional molecular interactions. hRNase3 has multiple functions including ribonucleolytic, heparan sulfate (HS) binding, cellular binding, endocytic, lipid destabilization, cytotoxic, and antimicrobial activities. In this study, three putative multifunctional regions, 34RWRCK38 (HBR1), 75RSRFR79 (HBR2), and 101RPGRR105 (HBR3), of hRNase3 have been identified employing in silico sequence analysis and validated employing in vitro activity assays. A heparin binding peptide containing HBR1 is characterized to act as a key element associated with HS binding, cellular binding, and lipid binding activities. In this study, we provide novel insights to identify functional regions of hRNase3 that may have implications for all hRNaseA superfamily members.