About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 170398, 12 pages
http://dx.doi.org/10.1155/2013/170398
Research Article

In Silico Prediction and In Vitro Characterization of Multifunctional Human RNase3

1Institute of Molecular and Cellular Biology, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
2Institute of Biotechnology, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
3Department of Computer Science and Engineering, National Taiwan Ocean University, 2 Pei Ning Road, Keelung 20224, Taiwan
4Department of Medical Science, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan

Received 31 October 2012; Accepted 2 December 2012

Academic Editor: Hao-Teng Chang

Copyright © 2013 Pei-Chun Lien et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. Beintema and R. G. Kleineidam, “The ribonuclease A superfamily: general discussion,” Cellular and Molecular Life Sciences, vol. 54, no. 8, pp. 825–832, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. K. D. Dyer and H. F. Rosenberg, “The RNase a superfamily: generation of diversity and innate host defense,” Molecular Diversity, vol. 10, no. 4, pp. 585–597, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Cho, J. J. Beintema, and J. Zhang, “The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories,” Genomics, vol. 85, no. 2, pp. 208–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. H. F. Rosenberg, “The eosinophil ribonucleases,” Cellular and Molecular Life Sciences, vol. 54, no. 8, pp. 795–803, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. M. T. Rugeles, C. M. Trubey, V. I. Bedoya et al., “Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition,” AIDS, vol. 17, no. 4, pp. 481–486, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Sorrentino, “The eight human “canonical” ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins,” FEBS Letters, vol. 584, no. 11, pp. 2194–2200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Maeda, M. Kitazoe, H. Tada et al., “Growth inhibition of mammalian cells by eosinophil cationic protein,” European Journal of Biochemistry, vol. 269, no. 1, pp. 307–316, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. J. E. Lee and R. T. Raines, “Cytotoxicity of bovine seminal ribonuclease: monomer versus dimer,” Biochemistry, vol. 44, no. 48, pp. 15760–15767, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. K. J. Hamann, G. J. Gleich, J. L. Checkel, D. A. Loegering, J. W. McCall, and R. L. Barker, “In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins,” Journal of Immunology, vol. 144, no. 8, pp. 3166–3173, 1990. View at Scopus
  10. K. J. Hamann, R. L. Barker, D. A. Loegering, and G. J. Gleich, “Comparative toxicity of purified human eosinophil granule proteins for newborn larvae of Trichinella spiralis,” Journal of Parasitology, vol. 73, no. 3, pp. 523–529, 1987. View at Scopus
  11. L. V. Hooper, T. S. Stappenbeck, C. V. Hong, and J. I. Gordon, “Angiogenins: a new class of microbicidal proteins involved in innate immunity,” Nature Immunology, vol. 4, no. 3, pp. 269–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Rudolph, R. Podschun, H. Sahly, S. Schubert, J. M. Schröder, and J. Harder, “Identification of RNase 8 as a novel human antimicrobial protein,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 9, pp. 3194–3196, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Lee-Huang, P. L. Huang, Y. Sun et al., “Lysozyme and RNases as anti-HIV components in β-core preparations of human chorionic gonadotropin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 2678–2681, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Sorkness, K. McGill, and W. W. Busse, “Evaluation of serum eosinophil cationic protein as a predictive marker for asthma exacerbation in patients with persistent disease,” Clinical and Experimental Allergy, vol. 32, no. 9, pp. 1355–1359, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Torrent, B. G. de la Torre, V. M. Nogués, D. Andreu, and E. Boix, “Bactericidal and membrane disruption activities of the eosinophil cationic protein are largely retained in an N-terminal fragment,” Biochemical Journal, vol. 421, no. 3, pp. 425–434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Torrent, M. Badia, M. Moussaoui, D. Sanchez, M. V. Nogués, and E. Boix, “Comparison of human RNase 3 and RNase 7 bactericidal action at the gram-negative and gram-positive bacterial cell wall,” FEBS Journal, vol. 277, no. 7, pp. 1713–1725, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Navarro, J. Aleu, M. Jiménez, E. Boix, C. M. Cuchillo, and M. V. Nogués, “The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane,” Cellular and Molecular Life Sciences, vol. 65, no. 2, pp. 324–337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. F. García-Mayoral, M. Moussaoui, B. G. de la Torre et al., “NMR structural determinants of eosinophil cationic protein binding to membrane and heparin mimetics,” Biophysical Journal, vol. 98, no. 11, pp. 2702–2711, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Torrent, S. Navarro, M. Moussaoui, M. V. Nogués, and E. Boix, “Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans,” Biochemistry, vol. 47, no. 11, pp. 3544–3555, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Pulido, M. Moussaoui, D. Andreu, M. V. Nogues, M. Torrent, and E. Boix, “Antimicrobial action and cell agglutination by the eosinophil cationic protein are modulated by the cell wall lipopolysaccharide structure,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 5, pp. 2378–2385, 2012. View at Publisher · View at Google Scholar
  21. A. Trulson, J. Byström, A. Engström, R. Larsson, and P. Venge, “The functional heterogeneity of eosinophil cationic protein is determined by a gene polymorphism and post-translational modifications,” Clinical and Experimental Allergy, vol. 37, no. 2, pp. 208–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Sugihara, T. Kumamoto, T. Ito, H. Ueyama, I. Toyoshima, and T. Tsuda, “Human muscle protein degradation in vitro by eosinophil cationic protein (ECP),” Muscle and Nerve, vol. 24, no. 12, pp. 1627–1634, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. C. Pereira, D. T. Oliveira, and L. P. Kowalski, “The role of eosinophils and eosinophil cationic protein in oral cancer: a review,” Archives of Oral Biology, vol. 56, no. 4, pp. 353–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. L. M. Zheutlin, S. J. Ackerman, G. J. Gleich, and L. L. Thomas, “Stimulation of basophil and rat mast cell histamine release by eosinophil granule-derived cationic protein,” Journal of Immunology, vol. 133, no. 4, pp. 2180–2185, 1984. View at Scopus
  25. J. B. Domachowske, K. D. Dyer, A. G. Adams, T. L. Leto, and H. F. Rosenberg, “Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity,” Nucleic Acids Research, vol. 26, no. 14, pp. 3358–3363, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. K. C. Chang, C. W. Lo, T. C. Fan et al., “TNF-α mediates eosinophil cationic protein-induced apoptosis in BEAS-2B cells,” BMC Cell Biology, vol. 11, article 6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. T. C. Fan, S. L. Fang, C. S. Hwang et al., “Characterization of molecular interactions between eosinophil cationic protein and heparin,” The Journal of Biological Chemistry, vol. 283, no. 37, pp. 25468–25474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. T. C. Fan, H. T. Chang, I. W. Chen, H. Y. Wang, and M. D. T. Chang, “A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein,” Traffic, vol. 8, no. 12, pp. 1778–1795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. R. J. Johnson, J. G. McCoy, C. A. Bingman, G. N. Phillips Jr., and R. T. Raines, “Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein,” Journal of Molecular Biology, vol. 368, no. 2, pp. 434–449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. G. J. Gleich, D. A. Loegering, M. P. Bell, J. L. Checkel, S. J. Ackerman, and D. J. McKean, “Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 10, pp. 3146–3150, 1986. View at Scopus
  31. J. E. Gabay, R. W. Scott, D. Campanelli et al., “Antibiotic proteins of human polymorphonuclear leukocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 14, pp. 5610–5614, 1989. View at Scopus
  32. D. Yang, Q. Chen, H. F. Rosenberg et al., “Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation,” Journal of Immunology, vol. 173, no. 10, pp. 6134–6142, 2004. View at Scopus
  33. M. Seno, J. I. Futami, Y. Tsushima et al., “Molecular cloning and expression of human ribonuclease 4 cDNA,” Biochimica et Biophysica Acta, vol. 1261, no. 3, pp. 424–426, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. R. D. I. Liddo, D. Dalzoppo, S. Baiguera et al., “In vitro biological activity of bovine milk ribonuclease-4,” Molecular Medicine Reports, vol. 3, no. 1, pp. 127–132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. K. Saxena, S. M. Rybak, R. T. Davey Jr., R. J. Youle, and E. J. Ackerman, “Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily,” The Journal of Biological Chemistry, vol. 267, no. 30, pp. 21982–21986, 1992. View at Scopus
  36. G. Tsirakis, C. A. Pappa, P. Kanellou et al., “Role of platelet-derived growth factor-AB in tumour growth and angiogenesis in relation with other angiogenic cytokines in multiple myeloma,” Hematological Oncology, vol. 30, no. 3, pp. 131–136, 2012. View at Publisher · View at Google Scholar
  37. H. F. Rosenberg and K. D. Dyer, “Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family,” Nucleic Acids Research, vol. 24, no. 18, pp. 3507–3513, 1996. View at Scopus
  38. M. Torrent, D. Sánchez, V. Buzón, M. V. Nogués, J. Cladera, and E. Boix, “Comparison of the membrane interaction mechanism of two antimicrobial RNases: RNase 3/ECP and RNase 7,” Biochimica et Biophysica Acta, vol. 1788, no. 5, pp. 1116–1125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Harder and J. M. Schröder, “RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin,” The Journal of Biological Chemistry, vol. 277, no. 48, pp. 46779–46784, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. C. Huang, Y. M. Lin, T. W. Chang et al., “The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity,” The Journal of Biological Chemistry, vol. 282, no. 7, pp. 4626–4633, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Zhang, K. D. Dyer, and H. F. Rosenberg, “RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta,” Nucleic Acids Research, vol. 30, no. 5, pp. 1169–1175, 2002. View at Scopus
  42. T. W. Pai, M. D. T. Chang, W. S. Tzou et al., “REMUS: a tool for identification of unique peptide segments as epitopes,” Nucleic Acids Research, vol. 34, pp. W198–W201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Boix, Z. Nikolovski, G. P. Moiseyev, H. F. Rosenberg, C. M. Cuchillo, and M. V. Nogués, “Kinetic and product distribution analysis of human eosinophil cationic protein indicates a subsite arrangement that favors exonuclease-type activity,” The Journal of Biological Chemistry, vol. 274, no. 22, pp. 15605–15614, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Calabro, M. Benavides, M. Tammi, V. C. Hascall, and R. J. Midura, “Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore-assisted carbohydrate electrophoresis (FACE),” Glycobiology, vol. 10, no. 3, pp. 273–281, 2000. View at Scopus
  45. J. D. E. Young, C. G. B. Peterson, P. Venge, and Z. A. Cohn, “Mechanims of membrane damage mediated by human eosinophil cationic protein,” Nature, vol. 321, no. 6070, pp. 613–616, 1986. View at Scopus
  46. I. D'Angelo, S. Welti, F. Bonneau, and K. Scheffzek, “A novel bipartite phospholipid-binding module in the neurofibromatosis type 1 protein,” EMBO Reports, vol. 7, no. 2, pp. 174–179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Ishizuka, “Chemistry and functional distribution of sulfoglycolipids,” Progress in Lipid Research, vol. 36, no. 4, pp. 245–319, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. S. C. Hung, X. A. Lu, J. C. Lee et al., “Synthesis of heparin oligosaccharides and their interaction with eosinophil-derived neurotoxin,” Organic and Biomolecular Chemistry, vol. 10, no. 4, pp. 760–772, 2012. View at Publisher · View at Google Scholar
  49. F. Soncin, D. J. Strydom, and R. Shapiro, “Interaction of heparin with human angiogenin,” The Journal of Biological Chemistry, vol. 272, no. 15, pp. 9818–9824, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Carreras, E. Boix, H. F. Rosenberg, C. M. Cuchillo, and M. V. Nogués, “Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein,” Biochemistry, vol. 42, no. 22, pp. 6636–6644, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. M. M. Miyamoto, B. F. Koop, J. L. Slightom, M. Goodman, and M. R. Tennant, “Molecular systematics of higher primates: genealogical relations and classification,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 20, pp. 7627–7631, 1988. View at Scopus
  52. H. F. Rosenberg, K. D. Dyer, H. L. Tiffany, and M. Gonzalez, “Rapid evolution of a unique family of primate ribonuclease genes,” Nature Genetics, vol. 10, no. 2, pp. 219–223, 1995. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Z. Cheng, J. Y. Li, F. Li, H. Y. Wang, and G. X. Shi, “Human ribonuclease 9, a member of ribonuclease A superfamily, specifically expressed in epididymis, is a novel sperm-binding protein,” Asian Journal of Andrology, vol. 11, no. 2, pp. 240–251, 2009. View at Publisher · View at Google Scholar · View at Scopus