About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 186215, 8 pages
http://dx.doi.org/10.1155/2013/186215
Review Article

Gene Therapy and Cell-Based Therapies for Therapeutic Angiogenesis in Peripheral Artery Disease

1Division of Vascular Medicine and Epigenetics, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, and Hamamatsu University School of Medicine, 2-1 Yamadaoka, Suita 565-0817, Osaka, Japan
2Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan

Received 16 August 2013; Accepted 9 September 2013

Academic Editor: Ken Suzuki

Copyright © 2013 Munehisa Shimamura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Ferrara, H.-P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Ferrara and K. Alitalo, “Clinical applications of angiogenic growth factors and their inhibitors,” Nature Medicine, vol. 5, no. 12, pp. 1359–1364, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Isner, A. Pieczek, R. Schainfeld et al., “Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb,” The Lancet, vol. 348, no. 9024, pp. 370–374, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Baumgartner, A. Pieczek, O. Manor et al., “Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia,” Circulation, vol. 97, no. 12, pp. 1114–1123, 1998. View at Scopus
  5. J. M. Isner, I. Baumgartner, G. Rauh et al., “Treatment of thromboangiitis obliterans (Buerger's disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results,” Journal of Vascular Surgery, vol. 28, no. 6, pp. 964–975, 1998. View at Scopus
  6. K. Mäkinen, H. Mannine, M. Hedman et al., “Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase II study,” Molecular Therapy, vol. 6, no. 1, pp. 127–133, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Rajagopalan, M. Shah, A. Luciano, R. Crystal, and E. G. Nabel, “Adenovirus-mediated gene transfer of VEGF121 improves lower-extremity endothelial function and flow reserve,” Circulation, vol. 104, no. 7, pp. 753–755, 2001. View at Scopus
  8. Y. H. Kusumanto, V. van Weel, N. H. Mulder et al., “Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial,” Human Gene Therapy, vol. 17, no. 6, pp. 683–691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Rajagopalan, E. R. Mohler III, R. J. Lederman et al., “Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication,” Circulation, vol. 108, no. 16, pp. 1933–1938, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Muona, K. Mäkinen, M. Hedman, H. Manninen, and S. Ylä-Herttuala, “10-Year safety follow-up in patients with local VEGF gene transfer to ischemic lower limb,” Gene Therapy, vol. 19, no. 4, pp. 392–395, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. A. J. Comerota, R. C. Throm, K. A. Miller et al., “Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial,” Journal of Vascular Surgery, vol. 35, no. 5, pp. 930–936, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Nikol, I. Baumgartner, E. van Belle et al., “Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia,” Molecular Therapy, vol. 16, no. 5, pp. 972–978, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Shigematsu, K. Yasuda, T. Iwai et al., “Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia,” Gene Therapy, vol. 17, no. 9, pp. 1152–1161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Belch, W. R. Hiatt, I. Baumgartner et al., “Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia,” The Lancet, vol. 377, no. 9781, pp. 1929–1937, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Morishita, H. Makino, M. Aoki et al., “Phase I/IIa clinical trial of therapeutic angiogenesis using hepatocyte growth factor gene transfer to treat critical limb ischemia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 3, pp. 713–720, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Nakamura and S. Mizuno, “The discovery of Hepatocyte Growth Factor (HGF) and its significance for cell biology, life sciences and clinical medicine,” Proceedings of the Japan Academy B, vol. 86, no. 6, pp. 588–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Kaga, H. Kawano, M. Sakaguchi, T. Nakazawa, Y. Taniyama, and R. Morishita, “Hepatocyte growth factor stimulated angiogenesis without inflammation: differential actions between hepatocyte growth factor, vascular endothelial growth factor and basic fibroblast growth factor,” Vascular Pharmacology, vol. 57, no. 1, pp. 3–9, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Morishita, S. Nakamura, S.-I. Hayashi et al., “Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy,” Hypertension, vol. 33, no. 6, pp. 1379–1384, 1999. View at Scopus
  19. S.-I. Hayashi, R. Morishita, S. Nakamura et al., “Potential role of hepatocyte growth factor, a novel angiogenic growth factor, in peripheral arterial disease: downregulation of HGF in response to hypoxia in vascular cells,” Circulation, vol. 100, no. 19, pp. II301–II308, 1999. View at Scopus
  20. Y. Taniyama, R. Morishita, K. Hiraoka et al., “Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model: molecular mechanisms of delayed angiogenesis in diabetes,” Circulation, vol. 104, no. 19, pp. 2344–2350, 2001. View at Scopus
  21. Y. Taniyama, R. Morishita, M. Aoki et al., “Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: preclinical study for treatment of peripheral arterial disease,” Gene Therapy, vol. 8, no. 3, pp. 181–189, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Hiraoka, H. Koike, S. Yamamoto et al., “Enhanced therapeutic angiogenesis by cotransfection of prostacyclin synthase gene or optimization of intramuscular injection of naked plasmid DNA,” Circulation, vol. 108, no. 21, pp. 2689–2696, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Koike, R. Morishita, S. Iguchi et al., “Enhanced angiogenesis and improvement of neuropathy by cotransfection of human hepatocyte growth factor and prostacyclin synthase gene,” The FASEB Journal, vol. 17, no. 6, pp. 779–781, 2003. View at Scopus
  24. H. Makino, M. Aoki, N. Hashiya, et al., “Long-term follow-up evaluation of results from clinical trial using hepatocyte growth factor gene to treat severe peripheral arterial disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, pp. 2503–2509, 2012. View at Publisher · View at Google Scholar
  25. R. J. Powell, M. Simons, F. O. Mendelsohn et al., “Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia,” Circulation, vol. 118, no. 1, pp. 58–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. T. D. Henry, A. T. Hirsch, J. Goldman et al., “Safety of a non-viral plasmid-encoding dual isoforms of hepatocyte growth factor in critical limb ischemia patients: a phase I study,” Gene Therapy, vol. 18, no. 8, pp. 788–794, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Saeed, A. Martin, P. Ursell et al., “MR assessment of myocardial perfusion, viability, and function after intramyocardial transfer of VM202, a new plasmid human hepatocyte growth factor in ischemic swine myocardium,” Radiology, vol. 249, no. 1, pp. 107–118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Tateishi-Yuyama, H. Matsubara, T. Murohara et al., “Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial,” The Lancet, vol. 360, no. 9331, pp. 427–435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Esato, K. Hamano, T.-S. Li et al., “Neovascularization induced by autologous bone marrow cell implantation in peripheral arterial disease,” Cell Transplantation, vol. 11, no. 8, pp. 747–752, 2002. View at Scopus
  30. P. Huang, S. Li, M. Han, Z. Xiao, R. Yang, and Z. C. Han, “Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes,” Diabetes Care, vol. 28, no. 9, pp. 2155–2160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Miyamoto, K. Nishigami, N. Nagaya, et al., “Unblinded pilot study of autologous transplantation of bone marrow mononuclear cells in patients with thromboangiitis obliterans,” Circulation, vol. 114, pp. 2679–2684, 2006. View at Publisher · View at Google Scholar
  32. S. Durdu, A. R. Akar, M. Arat, T. Sancak, N. T. Eren, and U. Ozyurda, “Autologous bone-marrow mononuclear cell implantation for patients with Rutherford grade II-III thromboangiitis obliterans,” Journal of Vascular Surgery, vol. 44, no. 4, pp. 732–739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Arai, Y. Misao, H. Nagai et al., “Granulocyte colony-stimulating factor—a noninvasive regeneration therapy for treating atherosclerotic peripheral artery disease,” Circulation Journal, vol. 70, no. 9, pp. 1093–1098, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. P. P. Huang, X. F. Yang, S. Z. Li, J. C. Wen, Y. Zhang, and Z. C. Han, “Randomised comparison of G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow-mononuclear cells for the treatment of patients with lower limb arteriosclerosis obliterans,” Thrombosis and Haemostasis, vol. 98, no. 6, pp. 1335–1342, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Kawamoto, M. Katayama, N. Handa et al., “Intramuscular transplantation of G-CSF-mobilized CD34+ cells in patients with critical limb ischemia: a phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial,” Stem Cells, vol. 27, no. 11, pp. 2857–2864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Procházka, J. Gumulec, F. Jalůvka et al., “Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer,” Cell Transplantation, vol. 19, no. 11, pp. 1413–1424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. P. Murphy, J. H. Lawson, B. M. Rapp et al., “Autologous bone marrow mononuclear cell therapy is safe and promotes amputation-free survival in patients with critical limb ischemia,” Journal of Vascular Surgery, vol. 53, no. 6, pp. 1565.e1–1574.e1, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Lu, B. Chen, Z. Liang et al., “Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial,” Diabetes Research and Clinical Practice, vol. 92, no. 1, pp. 26–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. D. H. Walter, H. Krankenberg, J. O. Balzer et al., “Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia a randomized-start, placebo-controlled pilot trial (PROVASA),” Circulation, vol. 4, no. 1, pp. 26–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. R. J. Powell, W. A. Marston, S. A. Berceli et al., “Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial,” Molecular Therapy, vol. 20, no. 6, pp. 1280–1286, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. D. W. Losordo, M. R. Kibbe, F. Mendelsohn, et al., “A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia,” Circulation, vol. 5, pp. 821–830, 2012. View at Publisher · View at Google Scholar
  42. G. O. Ouma, R. A. Jonas, M. H. Usman, and E. R. Mohler III, “Targets and delivery methods for therapeutic angiogenesis in peripheral artery disease,” Vascular Medicine, vol. 17, no. 3, pp. 174–192, 2012. View at Publisher · View at Google Scholar
  43. G. P. Fadini, C. Agostini, and A. Avogaro, “Autologous stem cell therapy for peripheral arterial disease. Meta-analysis and systematic review of the literature,” Atherosclerosis, vol. 209, no. 1, pp. 10–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Benoit, T. F. O'Donnell, and A. N. Patel, “Safety and efficacy of autologous cell therapy in critical limb ischemia: a systematic review,” Cell Transplantation, vol. 22, no. 3, pp. 545–562, 2013. View at Publisher · View at Google Scholar
  45. M. Teraa, R. W. Sprengers, Y. van der Graaf, C. E. Peters, F. L. Moll, and M. C. Verhaar, “Autologous bone marrow-derived cell therapy in patients with critical limb ischemia: a meta-analysis of randomized controlled clinical trials,” Annals of Surgery, 2013. View at Publisher · View at Google Scholar
  46. T. Asahara, T. Murohara, A. Sullivan et al., “Isolation of putative progenitor endothelial cells for angiogenesis,” Science, vol. 275, no. 5302, pp. 964–967, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Matthias, N. David, and N. Josef, “From bench to bedside: what physicians need to know about endothelial progenitor cells,” American Journal of Medicine, vol. 124, no. 6, pp. 489–497, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. Z. Raval and D. W. Losordo, “Cell therapy of peripheral arterial disease from experimental findings to clinical trials,” Circulation Research, vol. 112, pp. 1288–1302, 2013. View at Publisher · View at Google Scholar
  49. M. Kinoshita, Y. Fujita, M. Katayama, et al., “Long-term clinical outcome after intramuscular transplantation of granulocyte colony stimulating factor-mobilized CD34 positive cells in patients with critical limb ischemia,” Atherosclerosis, vol. 224, pp. 440–445, 2012. View at Publisher · View at Google Scholar
  50. R. K. Burt, A. Testori, Y. Oyama et al., “Autologous peripheral blood CD133+ cell implantation for limb salvage in patients with critical limb ischemia,” Bone Marrow Transplantation, vol. 45, no. 1, pp. 111–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. O. M. Tepper, R. D. Galiano, J. M. Capla et al., “Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures,” Circulation, vol. 106, no. 22, pp. 2781–2786, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. P. R. Jarajapu and M. B. Grant, “The promise of cell-based therapies for diabetic complications: challenges and solutions,” Circulation Research, vol. 106, no. 8, pp. 854–869, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. P. R. Jarajapu, S. Caballero, A. Verma et al., “Blockade of NADPH oxidase restores vasoreparative function in diabetic CD34+ cells,” Investigative Ophthalmology & Visual Science, vol. 52, no. 8, pp. 5093–5104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Taniyama, K. Tachibana, K. Hiraoka et al., “Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle,” Gene Therapy, vol. 9, no. 6, pp. 372–380, 2002. View at Publisher · View at Google Scholar · View at Scopus