About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 186972, 9 pages
http://dx.doi.org/10.1155/2013/186972
Research Article

Long-Term Nitric Oxide Exposure Enhances Lung Cancer Cell Migration

Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences and Cell-based Drug and Health Product Development Research Unit, Chulalongkorn University, Bangkok, Thailand

Received 25 April 2013; Revised 27 June 2013; Accepted 28 June 2013

Academic Editor: Silvia Gregori

Copyright © 2013 Arpasinee Sanuphan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Manda, M. T. Nechifor, and T.-M. Neagu, “Reactive oxygen species, cancer and anti-cancer therapies,” Current Chemical Biology, vol. 3, no. 1, pp. 22–46, 2009. View at Scopus
  3. A. Keibel, V. Singh, and M. C. Sharma, “Inflammation, microenvironment, and the immune system in cancer progression,” Current Pharmaceutical Design, vol. 15, no. 17, pp. 1949–1955, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. K. Lala and C. Chakraborty, “Role of nitric oxide in carcinogenesis and tumour progression,” Lancet Oncology, vol. 2, no. 3, pp. 149–156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Masri, “Role of nitric oxide and its metabolites as potential markers in lung cancer,” Annals of Thoracic Medicine, vol. 5, no. 3, pp. 123–127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. F. A. Masri, S. A. A. Comhair, T. Koeck et al., “Abnormalities in nitric oxide and its derivatives in lung cancer,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 5, pp. 597–605, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Esme, M. Cemek, M. Sezer et al., “High levels of oxidative stress in patients with advanced lung cancer,” Respirology, vol. 13, no. 1, pp. 112–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. H. Geho, R. W. Bandle, T. Clair, and L. A. Liotta, “Physiological mechanisms of tumor-cell invasion and migration,” Physiology, vol. 20, no. 3, pp. 194–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. L. A. Mina and G. W. Sledge Jr., “Rethinking the metastatic cascade as a therapeutic target,” Nature Reviews Clinical Oncology, vol. 8, no. 6, pp. 325–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Parri and P. Chiarugi, “Rac and Rho GTPases in cancer cell motility control,” Cell Communication and Signaling, vol. 8, no. 23, pp. 1–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. D. Nobes and A. Hall, “Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia,” Cell, vol. 81, no. 1, pp. 53–62, 1995. View at Scopus
  12. B. Serrels, A. Serrels, V. G. Brunton et al., “Focal adhesion kinase controls actin assembly via a FERM-mediated interaction with the Arp2/3 complex,” Nature Cell Biology, vol. 9, no. 9, pp. 1046–1056, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. L. A. Cary, J. F. Chang, and J.-L. Guan, “Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn,” Journal of Cell Science, vol. 109, no. 7, pp. 1787–1794, 1996. View at Scopus
  14. S. K. Mitra, D. A. Hanson, and D. D. Schlaepfer, “Focal adhesion kinase: in command and control of cell motility,” Nature Reviews Molecular Cell Biology, vol. 6, no. 1, pp. 56–68, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. W. E. Allen, G. E. Jones, J. W. Pollard, and A. J. Ridley, “Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages,” Journal of Cell Science, vol. 110, no. 6, pp. 707–720, 1997. View at Scopus
  16. K. Kaibuchi, S. Kuroda, and M. Amano, “Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells,” Annual Review of Biochemistry, vol. 68, pp. 459–486, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. T. M. Williams and M. P. Lisanti, “Caveolin-1 in oncogenic transformation, cancer, and metastasis,” American Journal of Physiology—Cell Physiology, vol. 288, no. 3, pp. C494–C506, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Chanvorachote, U. Nimmannit, Y. Lu, S. Talbott, B.-H. Jiang, and Y. Rojanasakul, “Nitric oxide regulates lung carcinoma cell anoikis through inhibition of ubiquitin-proteasomal degradation of caveolin-1,” Journal of Biological Chemistry, vol. 284, no. 41, pp. 28476–28484, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Luanpitpong, S. J. Talbott, Y. Rojanasakul et al., “Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1,” Journal of Biological Chemistry, vol. 285, no. 50, pp. 38832–38840, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Rungtabnapa, U. Nimmannit, H. Halim, Y. Rojanasakul, and P. Chanvorachote, “Hydrogen peroxide inhibits non-small cell lung cancer cell anoikis through the inhibition of caveolin-1 degradation,” American Journal of Physiology—Cell Physiology, vol. 300, no. 2, pp. C235–C245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Pongjit and P. Chanvorachote, “Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism,” Molecular and Cellular Biochemistry, vol. 358, no. 1-2, pp. 365–373, 2011. View at Scopus
  22. P. Chunhacha, V. Pongrakhananon, Y. Rojanasakul, and P. Chanvorachote, “Caveolin-1 regulates Mcl-1 stability and anoikis in lung carcinoma cells,” American Journal of Physiology—Cell Physiology, vol. 302, no. 9, pp. C1284–C1292, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Songserm, V. Pongrakhananon, and P. Chanvorachote, “Sub-toxic cisplatin mediates anoikis resistance through hydrogen peroxide-induced caveolin-1 up-regulation in non-small cell lung cancer cells,” Anticancer Research, vol. 32, no. 5, pp. 1659–1669, 2012.
  24. H. Halim, S. Luanpitpong, and P. Chanvorachote, “Acquisition of anoikis resistance up-regulates caveolin-1 expression in human non-small cell lung cancer cells,” Anticancer Research, vol. 32, no. 5, pp. 1649–1658, 2012.
  25. W. Suchaoin and P. Chanvorachote, “Caveolin-1 attenuates hydrogen peroxide-induced oxidative damage to lung carcinoma cells,” Anticancer Research, vol. 32, no. 2, pp. 483–490, 2012. View at Scopus
  26. P. Chunhacha and P. Chanvorachote, “Roles of caveolin-1 on anoikis resistance in non small cell lung cancer,” International Journal of Physiology, Pathophysiology and Pharmacology, vol. 4, no. 3, pp. 149–155, 2012.
  27. C.-C. Ho, P.-H. Huang, H.-Y. Huang, Y.-H. Chen, P.-C. Yang, and S.-M. Hsu, “Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation,” American Journal of Pathology, vol. 161, no. 5, pp. 1647–1656, 2002. View at Scopus
  28. F. Sotgia, U. E. Martinez-Outschoorn, A. Howell, R. G. Pestell, S. Pavlides, and M. P. Lisanti, “Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms,” Annual Review of Pathology: Mechanisms of Disease, vol. 7, pp. 423–467, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. V. P. Terranova, E. S. Hujanen, D. M. Loeb, G. R. Martin, L. Thornburg, and V. Glushko, “Use of a reconstituted basement membrane to measure cell invasiveness and select for highly invasive tumor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 2, pp. 465–469, 1986. View at Scopus
  30. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA: A Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Scopus
  31. M. Paesmans, J. P. Sculier, P. Libert et al., “Prognostic factors for survival in advanced non-small-cell lung cancer: univariate and multivariate analyses including recursive partitioning and amalgamation algorithms in 1,052 patients,” Journal of Clinical Oncology, vol. 13, no. 5, pp. 1221–1230, 1995. View at Scopus
  32. S. Moncada and A. Higgs, “The L-arginine-nitric oxide pathway,” The New England Journal of Medicine, vol. 329, no. 27, pp. 2002–2012, 1993. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Sarkar, E. G. Meinberg, J. C. Stanley, R. D. Gordon, and R. C. Webb, “Nitric oxide reversibly inhibits the migration of cultured vascular smooth muscle cells,” Circulation Research, vol. 78, no. 2, pp. 225–230, 1996. View at Scopus
  34. A. Chen, S. M. Kumar, C. L. Sahley, and K. J. Muller, “Nitric oxide influences injury-induced microglial migration and accumulation in the leech CNS,” Journal of Neuroscience, vol. 20, no. 3, pp. 1036–1043, 2000. View at Scopus
  35. A. Dhar, J. M. Brindley, C. Stark, M. L. Citro, L. K. Keefer, and N. H. Colburn, “Nitric oxide does not mediate but inhibits transformation and tumor phenotype,” Molecular Cancer Therapeutics, vol. 2, no. 12, pp. 1285–1293, 2003. View at Scopus
  36. D. Fukumura, S. Kashiwagi, and R. K. Jain, “The role of nitric oxide in tumour progression,” Nature Reviews Cancer, vol. 6, no. 7, pp. 521–534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. J. R. Hickok, S. Sahni, Y. Mikhed, M. G. Bonini, and D. D. Thomas, “Nitric oxide suppresses tumor cell migration through N-Myc downstream-regulated gene-1 (NDRG1) expression: role of chelatable iron,” Journal of Biological Chemistry, vol. 286, no. 48, pp. 41413–41424, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Polytarchou, M. Hatziapostolou, E. Poimenidi et al., “Nitric oxide stimulates migration of human endothelial and prostate cancer cells through up-regulation of pleiotrophin expression and its receptor protein tyrosine phosphatase β/ζ,” International Journal of Cancer, vol. 124, no. 8, pp. 1785–1793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Turečková, M. Vojtěchová, M. Krausová, E. Šloncová, and V. Korínek, “Focal adhesion kinase functions as an akt downstream target in migration of colorectal cancer cells,” Translational Oncology, vol. 2, no. 4, pp. 281–290, 2009.