About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 190382, 7 pages
http://dx.doi.org/10.1155/2013/190382
Research Article

Over, and Underexpression of Endothelin 1 and TGF-Beta Family Ligands and Receptors in Lung Tissue of Broilers with Pulmonary Hypertension

1Unidad Laguna, Universidad Autónoma Agraria Antonio Narro, 27010 Torreón, COAH, Mexico
2Posgrado del Centro de Estudios Justo Sierra, Surutato, 80600 Badiraguato, SIN, Mexico
3Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Villa Quietud, 04960 Coyoacan, DF, Mexico
4Posgrado Biología Experimental, Universidad Autónoma Metropolitana Iztapalapa, 09340 Iztapalapa, Mexico
5FMVZ, Benemérita Universidad Autónoma de Puebla, 72482 Tecamachalco, PUE, Mexico
6Departamento de Inmunología, Instituto Nacional de Cardiología Dr. Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, 140080 Tlalpan, DF, Mexico

Received 30 April 2013; Revised 13 July 2013; Accepted 10 September 2013

Academic Editor: Coline van Moorsel

Copyright © 2013 Norma Dominguez-Avila et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J.-L. Vachiéry and A. Davenport, “The endothelin system in pulmonary and renal vasculopathy: les liaisons dangereuses,” European Respiratory Review, vol. 18, no. 114, pp. 260–271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Castañares, M. Redondo-Horcajo, N. Magan-Marchal, S. Lamas, and F. Rodriguez-Pascual, “Transforming growth factor-β receptor requirements for the induction of the endothelin-1 gene,” Experimental Biology and Medicine, vol. 231, no. 6, pp. 700–703, 2006. View at Scopus
  3. C. Castañares, M. Redondo-Horcajo, N. Magán-Marchal, P. Ten Dijke, S. Lamas, and F. Rodríguez-Pascual, “Signaling by ALK5 mediates TGF-β-induces ET-1 expression in endothelial cells: a role for migration and proliferation,” Journal of Cell Science, vol. 120, no. 7, pp. 1256–1266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Deng, M. B. Hershenson, J. Lei, A. C. Anyanwu, D. J. Pinsky, and J. Kelley Bentley, “Pulmonary artery smooth muscle hypertrophy: roles of glycogen synthase kinase-3β and p70 ribosomal S6 kinase,” American Journal of Physiology, vol. 298, no. 6, pp. L793–L803, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. P. Gomez, M. J. Moreno, R. M. Baldrich, and A. Hernández, “Endothelin-1 molecular ribonucleic acid expression in pulmonary hypertensive and nonhypertensive chickens,” Poultry Science, vol. 87, no. 7, pp. 1395–1401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. P. Gomez, M. J. Moreno, A. Iglesias, P. X. Coral, and A. Hernández, “Endothelin 1, its endothelin type a receptor, connective tissue growth factor, platelet-derived growth factor, and adrenomedullin expression in lungs of pulmonary hypertensive and nonhypertensive chickens,” Poultry Science, vol. 86, no. 5, pp. 909–916, 2007. View at Scopus
  7. K. R. Hamal, R. F. Wideman, N. B. Anthony, and G. F. Erf, “Differential expression of vasoactive mediators in microparticle-challenged lungs of chickens that differ in susceptibility to pulmonary arterial hypertension,” American Journal of Physiology, vol. 298, no. 1, pp. R235–R242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Yang, M. Gao, Z. Wu, and Y. Guo, “Genistein attenuates low temperature induced pulmonary hypertension in broiler chicks by modulating endothelial function,” European Journal of Pharmacology, vol. 649, no. 1–3, pp. 242–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. U. Bartram and C. P. Speer, “The role of transforming growth factor β in lung development and disease,” Chest, vol. 125, no. 2, pp. 754–765, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Pardali and P. ten Dijke, “TGFβ signaling and cardiovascular diseases,” International Journal of Biological Sciences, vol. 8, no. 2, pp. 195–213, 2012. View at Scopus
  11. R. J. Julian, “Ascites in poultry,” Avian Pathology, vol. 22, pp. 419–454, 1993.
  12. R. J. Julian, “Production and growth related disorders and other metabolic diseases of poultry—a review,” Veterinary Journal, vol. 169, no. 3, pp. 350–369, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. R. Gupta, “Ascites syndrome in poultry: a review,” World's Poultry Science Journal, vol. 67, no. 3, pp. 457–468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. R. F. Wideman Jr. and K. R. Hamal, “Idiopathic pulmonary arterial hypertension: an avian model for plexogenic arteriopathy and serotonergic vasoconstriction,” Journal of Pharmacological and Toxicological Methods, vol. 63, no. 3, pp. 283–295, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. A. Olkowski, C. Wojnarowicz, B. M. Rathgeber, J. A. Abbott, and H. L. Classen, “Lesions of the pericardium and their significance in the aetiology of heart failure in broiler chickens,” Research in Veterinary Science, vol. 74, no. 3, pp. 203–211, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. A. Olkowski and H. L. Classen, “Progressive bradycardia, a possible factor in the pathogenesis of ascites in fast growing broiler chickens raised at low altitude,” British Poultry Science, vol. 39, no. 1, pp. 139–146, 1998. View at Scopus
  17. A. A. Olkowski, H. L. Classen, and L. Kumor, “Left atrio-ventricular valve degeneration, left ventricular dilation and right ventricular failure: a possible association with pulmonary hypertension and aetiology of ascites in broiler chickens,” Avian Pathology, vol. 27, no. 1, pp. 51–59, 1998. View at Scopus
  18. S. Nain, C. Wojnarowicz, B. Laarveld, and A. A. Olkowski, “Vascular remodeling and its role in the pathogenesis of ascites in fast growing commercial broilers,” Research in Veterinary Science, vol. 86, no. 3, pp. 479–484, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. C. I. Lorda-Diez, J. A. Montero, J. A. Garcia-Porrero, and J. M. Hurle, “Tgfβ2 and 3 are coexpressed with their extracellular regulator Ltbp1 in the early limb bud and modulate mesodermal outgrowth and BMP signaling in chicken embryos,” BMC Developmental Biology, vol. 10, article 69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Halper, D. W. Burt, and M. N. Romanov, “On reassessment of the chicken TGFB4 gene as TGFB1,” Growth Factors, vol. 22, no. 2, pp. 121–122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Hassanpour, M. Teshfam, H. Momtaz, G. N. Brujeni, and L. Shahgholian, “Up-regulation of Endothelin-1 and Endothelin type A receptor genes expression in the heart of broiler chickens versus layer chickens,” Research in Veterinary Science, vol. 89, no. 3, pp. 352–357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Hassanpour, H. Momtaz, L. Shahgholian, R. Bagheri, S. Sarfaraz, and B. Heydaripoor, “Gene expression of endothelin-1 and its receptors in the heart of broiler chickens with T3-induced pulmonary hypertension,” Research in Veterinary Science, vol. 91, no. 3, pp. 370–375, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Nguyen, N. Thorin-Trescases, and E. Thorin, “Working under pressure: coronary arteries and the endothelin system,” American Journal of Physiology, vol. 298, no. 5, pp. R1188–R1194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. T. J. Broekelmann, A. H. Limper, T. V. Colby, and J. A. McDonald, “Transforming growth factor β1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 15, pp. 6642–6646, 1991. View at Publisher · View at Google Scholar · View at Scopus
  25. M. D. Botney, W. C. Parks, E. C. Crouch, K. Stenmark, and R. P. Mecham, “Transforming growth factor-β1 is decreased in remodeling hypertensive bovine pulmonary arteries,” Journal of Clinical Investigation, vol. 89, no. 5, pp. 1629–1635, 1992. View at Scopus
  26. M. D. Botney, L. Bahadori, and L. I. Gold, “Vascular remodeling in primary pulmonary hypertension: potential role for transforming growth factor-β,” American Journal of Pathology, vol. 144, no. 2, pp. 286–295, 1994. View at Scopus
  27. A. Sulli, S. Soldano, C. Pizzorni et al., “Raynaud's phenomenon and plasma endothelin: correlations with capillaroscopic patterns in systemic sclerosis,” Journal of Rheumatology, vol. 36, no. 6, pp. 1235–1239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Prelog, P. Scheidegger, S. Peter, M. E. Gershwin, G. Wick, and R. Sgonc, “Diminished transforming growth factor β2 production leads to increased expression of a profibrotic procollagen α2 type I messenger RNA variant in embryonic fibroblasts of UCD-200 chickens, a model for systemic sclerosis,” Arthritis and Rheumatism, vol. 52, no. 6, pp. 1804–1811, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Sgonc and G. Wick, “Pro- and anti-fibrotic effects of TGF-beta in scleroderma,” Rheumatology, vol. 47, pp. v5–v7, 2008. View at Scopus
  30. C. P. Denton, P. A. Merkel, D. E. Furst et al., “Recombinant human anti-transforming growth factor β1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192,” Arthritis and Rheumatism, vol. 56, no. 1, pp. 323–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. G. D. Norata, E. Callegari, M. Marchesi, G. Chiesa, P. Eriksson, and A. L. Catapano, “High-density lipoproteins induce transforming growth factor-β2 expression in endothelial cells,” Circulation, vol. 111, no. 21, pp. 2805–2811, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. E. Schrementi, A. M. Ferreira, C. Zender, and L. A. DiPietro, “Site-specific production of TGF-β in oral mucosal and cutaneous wounds,” Wound Repair and Regeneration, vol. 16, no. 1, pp. 80–86, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Eslami, C. L. Gallant-Behm, D. A. Hart et al., “Expression of integrin αvβ6 and TGF-β in Scarless vs Scar-forming wound healing,” Journal of Histochemistry and Cytochemistry, vol. 57, no. 6, pp. 543–557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Drömann, J. Rupp, K. Rohmann et al., “The TGF-beta-Pseudoreceptor BAMBI is strongly expressed in COPD lungs and regulated by nontypeable Haemophilus influenzae,” Respiratory Research, vol. 11, article 67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Jankovic, A. Korac, B. Buzadzic, et al., “Endocrine and metabolic signaling in retroperitoneal white adipose tissue remodeling during cold acclimation,” Journal of Obesity, vol. 2013, Article ID 937572, 8 pages, 2013. View at Publisher · View at Google Scholar
  36. J. Wanninger, M. Neumeier, S. Bauer et al., “Adiponectin induces the transforming growth factor decoy receptor BAMBI in human hepatocytes,” FEBS Letters, vol. 585, no. 9, pp. 1338–1344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. A. Alejandre Alcázar, R. E. Morty, L. Lendzian et al., “Inhibition of tgf-β signaling and decreased apoptosis in iugr-associated lung disease in rats,” PLoS ONE, vol. 6, no. 10, Article ID e26371, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Richter, M. E. Yeager, A. Zaiman, C. D. Cool, N. F. Voelkel, and R. M. Tuder, “Impaired transforming growth factor-β signaling in idiopathic pulmonary arterial hypertension,” American Journal of Respiratory and Critical Care Medicine, vol. 170, no. 12, pp. 1340–1348, 2004. View at Publisher · View at Google Scholar · View at Scopus