About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 190486, 11 pages
http://dx.doi.org/10.1155/2013/190486
Review Article

Vasculogenic Cytokines in Wound Healing

Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA

Received 1 October 2012; Revised 8 January 2013; Accepted 23 January 2013

Academic Editor: Jorge Berlanga Acosta

Copyright © 2013 Victor W. Wong and Jeffrey D. Crawford. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Kahn, R. M. Robertson, R. Smith, and D. Eddy, “The impact of prevention on reducing the burden of cardiovascular disease,” Circulation, vol. 118, no. 5, pp. 576–585, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. K. Sen, G. M. Gordillo, S. Roy et al., “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair and Regeneration, vol. 17, no. 6, pp. 763–771, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. C. Wu, V. R. Driver, J. S. Wrobel, and D. G. Armstrong, “Foot ulcers in the diabetic patient, prevention and treatment,” Vascular Health and Risk Management, vol. 3, no. 1, pp. 65–76, 2007. View at Scopus
  4. K. Stockl, A. Vanderplas, E. Tafesse, and E. Chang, “Costs of lower-extremity ulcers among patients with diabetes,” Diabetes Care, vol. 27, no. 9, pp. 2129–2134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. B. Brown, K. L. Pedula, and A. W. Bakst, “The progressive cost of complications in type 2 diabetes mellitus,” Archives of Internal Medicine, vol. 159, no. 16, pp. 1873–1880, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Carral, M. Aguilar, G. Olveira, A. Mangas, I. Doménech, and I. Torres, “Increased hospital expenditures in diabetic patients hospitalized for cardiovascular diseases,” Journal of Diabetes and its Complications, vol. 17, no. 6, pp. 331–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash, “Vascular-specific growth factors and blood vessel formation,” Nature, vol. 407, no. 6801, pp. 242–248, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. S. M. Bauer, R. J. Bauer, and O. C. Velazquez, “Angiogenesis, vasculogenesis, and induction of healing in chronic wounds,” Vascular and Endovascular Surgery, vol. 39, no. 4, pp. 293–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. E. Ferguson, R. W. Kelley, and C. Patterson, “Mechanisms of endothelial differentiation in embryonic vasculogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 11, pp. 2246–2254, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Ferrara and R. S. Kerbel, “Angiogenesis as a therapeutic target,” Nature, vol. 438, no. 7070, pp. 967–974, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. T. Ding, S. Kumar, and D. C. Yu, “The role of endothelial progenitor cells in tumour vasculogenesis,” Pathobiology, vol. 75, no. 5, pp. 265–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. R. Swift and B. M. Weinstein, “Arterial-venous specification during development,” Circulation Research, vol. 104, no. 5, pp. 576–588, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Folkman, “Tumor angiogenesis: therapeutic implications,” The New England Journal of Medicine, vol. 285, no. 21, pp. 1182–1186, 1971. View at Scopus
  14. O. M. Tepper, J. M. Capla, R. D. Galiano et al., “Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells,” Blood, vol. 105, no. 3, pp. 1068–1077, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. G. L. Semenza, “Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling,” Journal of Cellular Biochemistry, vol. 102, no. 4, pp. 840–847, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Asahara, T. Murohara, A. Sullivan et al., “Isolation of putative progenitor endothelial cells for angiogenesis,” Science, vol. 275, no. 5302, pp. 964–967, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Carmeliet, “Manipulating angiogenesis in medicine,” Journal of Internal Medicine, vol. 255, no. 5, pp. 538–561, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Asahara, A. Kawamoto, and H. Masuda, “Concise review: circulating endothelial progenitor cells for vascular medicine,” Stem Cells, vol. 29, pp. 1650–1655, 2011.
  19. D. P. Sieveking, A. Buckle, D. S. Celermajer, and M. K. C. Ng, “Strikingly different angiogenic properties of endothelial progenitor cell subpopulations. Insights from a novel human angiogenesis assay,” Journal of the American College of Cardiology, vol. 51, no. 6, pp. 660–668, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. J. Medina, C. L. O'Neill, M. Sweeney et al., “Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities,” BMC Medical Genomics, vol. 3, article no. 18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Timmermans, J. Plum, M. C. Yöder, D. A. Ingram, B. Vandekerckhove, and J. Case, “Endothelial progenitor cells: identity defined?” Journal of Cellular and Molecular Medicine, vol. 13, no. 1, pp. 87–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Lamping, “Endothelial progenitor cells: sowing the seeds for vascular repair,” Circulation Research, vol. 100, no. 9, pp. 1243–1245, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Zampetaki, J. P. Kirton, and Q. Xu, “Vascular repair by endothelial progenitor cells,” Cardiovascular Research, vol. 78, no. 3, pp. 413–421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Urbich, C. Heeschen, A. Aicher, et al., “Cathepsin L is required for endothelial progenitor cell-induced neovascularization,” Nature Medicine, vol. 11, pp. 206–213, 2005.
  25. X. W. Cheng, M. Kuzuya, K. Nakamura et al., “Mechanisms underlying the impairment of ischemia-induced neovascularization in matrix metalloproteinase 2-deficient mice,” Circulation Research, vol. 100, no. 6, pp. 904–913, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Hamed, B. Brenner, A. Aharon, D. Daoud, and A. Roguin, “Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus,” Cardiovascular Diabetology, vol. 8, article no. 56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Iwakura, C. Luedemann, S. Shastry et al., “Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury,” Circulation, vol. 108, no. 25, pp. 3115–3121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple human organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Gerhardt and C. Betsholtz, “Endothelial-pericyte interactions in angiogenesis,” Cell and Tissue Research, vol. 314, no. 1, pp. 15–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Loffredo and R. T. Lee, “Therapeutic vasculogenesis: it takes two,” Circulation Research, vol. 103, no. 2, pp. 128–130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. M. Bauer, R. J. Bauer, Z. J. Liu, H. Chen, L. Goldstein, and O. C. Velazquez, “Vascular endothelial growth factor-C promotes vasculogenesis, angiogenesis, and collagen constriction in three-dimensional collagen gels,” Journal of Vascular Surgery, vol. 41, no. 4, pp. 699–707, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. D. C. Rafii, B. Psaila, J. Butler, D. K. Jin, and D. Lyden, “Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow-derived cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 2, pp. 217–222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Coultas, K. Chawengsaksophak, and J. Rossant, “Endothelial cells and VEGF in vascular development,” Nature, vol. 438, no. 7070, pp. 937–945, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Roskoski, “VEGF receptor protein-tyrosine kinases: structure and regulation,” Biochemical and Biophysical Research Communications, vol. 375, no. 3, pp. 287–291, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. A. Nagy, A. M. Dvorak, and H. F. Dvorak, “VEGF-A164/165 and PlGF: roles in angiogenesis and arteriogenesis,” Trends in Cardiovascular Medicine, vol. 13, no. 5, pp. 169–175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Li, F. Zhang, N. Nagai et al., “VEGF-B inhibits apoptosis via VEGFR-1-mediated suppression of the expression of BH3-only protein genes in mice and rats,” Journal of Clinical Investigation, vol. 118, no. 3, pp. 913–923, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Asahara, T. Takahashi, H. Masuda et al., “VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells,” The EMBO Journal, vol. 18, no. 14, pp. 3964–3972, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Li, E. E. Sharpe, A. B. Maupin et al., “VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization,” The FASEB Journal, vol. 20, no. 9, pp. 1495–1497, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. R. D. Galiano, O. M. Tepper, C. R. Pelo et al., “Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells,” American Journal of Pathology, vol. 164, no. 6, pp. 1935–1947, 2004. View at Scopus
  40. F. Caiado and S. Dias, “Endothelial progenitor cells and integrins: adhesive needs,” Fibrogenesis Tissue Repair, vol. 5, article 4, 2012.
  41. D. J. Ceradini and G. C. Gurtner, “Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue,” Trends in Cardiovascular Medicine, vol. 15, no. 2, pp. 57–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Thangarajah, D. Yao, E. I. Chang et al., “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 32, pp. 13505–13510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. R. Hoenig, C. Bianchi, and F. W. Sellke, “Hypoxia inducible factor -1α, endothelial progenitor cells, monocytes cardiovascular risk, wound healing, cobalt and hydralazine: a unifying hypothesis,” Current Drug Targets, vol. 9, no. 5, pp. 422–435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. I. R. Botusan, V. G. Sunkari, O. Savu et al., “Stabilization of HIF-1α is critical to improve wound healing in diabetic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19426–19431, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Peled, I. Petit, O. Kollet et al., “Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4,” Science, vol. 283, no. 5403, pp. 845–848, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. K. E. McGrath, A. D. Koniski, K. M. Maltby, J. K. McGann, and J. Palis, “Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4,” Developmental Biology, vol. 213, no. 2, pp. 442–456, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. G. C. Gurtner, S. A. Loh, E. I. Chang et al., “SDF-1α expression during wound healing in the aged is HIF dependent,” Plastic and Reconstructive Surgery, vol. 123, pp. 65S–75S, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. D. J. Ceradini, A. R. Kulkarni, M. J. Callaghan et al., “Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1,” Nature Medicine, vol. 10, no. 8, pp. 858–864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. J. I. Yamaguchi, K. F. Kusano, O. Masuo et al., “Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization,” Circulation, vol. 107, no. 9, pp. 1322–1328, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. K. I. Hiasa, M. Ishibashi, K. Ohtani et al., “Gene transfer of stromal cell-derived factor-1α enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization,” Circulation, vol. 109, no. 20, pp. 2454–2461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. K. A. Gallagher, Z. J. Liu, M. Xiao et al., “Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α,” Journal of Clinical Investigation, vol. 117, no. 5, pp. 1249–1259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Xing, L. Liu, G. P. Marti et al., “Hypoxia and hypoxia-inducible factor in the burn wound,” Wound Repair and Regeneration, vol. 19, no. 2, pp. 205–213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. O. Z. Lerman, M. R. Greives, S. P. Singh et al., “Low-dose radiation augments vasculogenesis signaling through HIF-1-dependent and -independent SDF-1 induction,” Blood, vol. 116, no. 18, pp. 3669–3676, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. D. I. R. Holmes and I. Zachary, “The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease,” Genome Biology, vol. 6, no. 2, article no. 209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Lange, J. Heger, G. Euler, M. Wartenberg, H. M. Piper, and H. Sauer, “Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem cell-derived endothelial cells by calcium-mediated generation of reactive oxygen species,” Cardiovascular Research, vol. 81, no. 1, pp. 159–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Hellström, M. Kalén, P. Lindahl, A. Abramsson, and C. Betsholtz, “Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse,” Development, vol. 126, no. 14, pp. 3047–3055, 1999. View at Scopus
  57. P. Lindahl, M. Hellström, M. Kalén et al., “Paracrine PDGF-B/PDGF-Rβ signaling controls mesangial cell development in kidney glomeruli,” Development, vol. 125, no. 17, pp. 3313–3322, 1998. View at Scopus
  58. S. G. Ball, C. A. Shuttleworth, and C. M. Kielty, “Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors,” Journal of Cellular and Molecular Medicine, vol. 11, no. 5, pp. 1012–1030, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. Q. Jin, G. Wei, Z. Lin et al., “Nanofibrous scaffolds incorporating PDGF-BB microspheres induce chemokine expression and tissue neogenesis in vivo,” PLoS ONE, vol. 3, no. 3, Article ID e1729, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. P. U. Magnusson, C. Looman, A. Åhgren, Y. Wu, L. Claesson-Welsh, and R. L. Heuchel, “Platelet-derived growth factor receptor-β constitutive activity promotes angiogenesis in vivo and in vitro,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 10, pp. 2142–2149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Shen, M. D. Vil, M. Prewett et al., “Development of a fully human anti-PDGFRβ antibody that suppresses growth of human tumor xenografts and enhances antitumor activity of an anti-VEGFR2 antibody,” Neoplasia, vol. 11, no. 6, pp. 594–604, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. M. O. Murphy, J. Ghosh, P. Fulford et al., “Expression of growth factors and growth factor receptor in non-healing and healing ischaemic ulceration,” European Journal of Vascular and Endovascular Surgery, vol. 31, no. 5, pp. 516–522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. R. K. Jain, “Molecular regulation of vessel maturation,” Nature Medicine, vol. 9, no. 6, pp. 685–693, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. M. C. Robson, D. P. Hill, P. D. Smith et al., “Sequential cytokine therapy for pressure ulcers: clinical and mechanistic response,” Annals of Surgery, vol. 231, no. 4, pp. 600–611, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. B. Thisse and C. Thisse, “Functions and regulations of fibroblast growth factor signaling during embryonic development,” Developmental Biology, vol. 287, no. 2, pp. 390–402, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Murakami and M. Simons, “Fibroblast growth factor regulation of neovascularization,” Current Opinion in Hematology, vol. 15, no. 3, pp. 215–220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. K. A. Detillieux, F. Sheikh, E. Kardami, and P. A. Cattini, “Biological activities of fibroblast growth factor-2 in the adult myocardium,” Cardiovascular Research, vol. 57, no. 1, pp. 8–19, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. M. L. Moya, S. Lucas, M. Francis-Sedlak et al., “Sustained delivery of FGF-1 increases vascular density in comparison to bolus administration,” Microvascular Research, vol. 78, no. 2, pp. 142–147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. M. L. Moya, M. H. Cheng, J. J. Huang et al., “The effect of FGF-1 loaded alginate microbeads on neovascularization and adipogenesis in a vascular pedicle model of adipose tissue engineering,” Biomaterials, vol. 31, no. 10, pp. 2816–2826, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Layman, M. Sacasa, A. E. Murphy, A. M. Murphy, S. M. Pham, and F. M. Andreopoulos, “Co-delivery of FGF-2 and G-CSF from gelatin-based hydrogels as angiogenic therapy in a murine critical limb ischemic model,” Acta Biomaterialia, vol. 5, no. 1, pp. 230–239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. P. E. Burger, S. Coetzee, W. L. McKeehan et al., “Fibroblast growth factor receptor-1 is expressed by endothelial progenitor cells,” Blood, vol. 100, no. 10, pp. 3527–3535, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Takahashi, N. Okubo, N. Chosa, et al., “Fibroblast growth factor-1-induced ERK1/2 signaling reciprocally regulates proliferation and smooth muscle cell differentiation of ligament-derived endothelial progenitor cell-like cells,” International Journal of Molecular Medicine, vol. 29, pp. 357–364, 2012.
  73. P. Dell'Era, M. Belleri, H. Stabile, M. L. Massardi, D. Ribatti, and M. Presta, “Paracrine and autocrine effects of fibroblast growth factor-4 in endothelial cells,” Oncogene, vol. 20, no. 21, pp. 2655–2663, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Gualandris, M. Rusnati, M. Belleri et al., “Basic fibroblast growth factor overexpression in endothelial cells: an autocrine mechanism for angiogenesis and angioproliferative diseases,” Cell Growth and Differentiation, vol. 7, no. 2, pp. 147–160, 1996. View at Scopus
  75. J. Asai, H. Takenaka, M. Ii, et al., “Topical application of ex vivo expanded endothelial progenitor cells promotes vascularisation and wound healing in diabetic mice,” International Wound Journal, 2012. View at Publisher · View at Google Scholar
  76. T. Takahashi, C. Kalka, H. Masuda et al., “Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization,” Nature Medicine, vol. 5, no. 4, pp. 434–438, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Mann, K. Breuhahn, P. Schirmacher, and M. Blessing, “Keratinocyte-derived granulocyte-macrophage colony stimulating factor accelerates wound healing: Stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization,” Journal of Investigative Dermatology, vol. 117, no. 6, pp. 1382–1390, 2001. View at Publisher · View at Google Scholar · View at Scopus
  78. X. Hu, H. Sun, C. Han, X. Wang, and W. Yu, “Topically applied rhGM-CSF for the wound healing: a systematic review,” Burns, vol. 37, no. 5, pp. 728–740, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. T. R. Hercus, D. Thomas, M. A. Guthridge et al., “The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease,” Blood, vol. 114, no. 7, pp. 1289–1298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. T. D. Eubank, R. Roberts, M. Galloway, Y. Wang, D. E. Cohn, and C. B. Marsh, “GM-CSF induces expression of soluble VEGF receptor-1 from human monocytes and inhibits angiogenesis in mice,” Immunity, vol. 21, no. 6, pp. 831–842, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Grote, H. Schuett, G. Salguero et al., “Toll-like receptor 2/6 stimulation promotes angiogenesis via GM-CSF as a potential strategy for immune defense and tissue regeneration,” Blood, vol. 115, no. 12, pp. 2543–2552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. W. Zhao and X. H. Yang, “PI3K-dependent ERK is involved in GM-CSF-mediated activation of progenitor cells in a neovasculari sation model,” South African Journal of Science, vol. 106, no. 5-6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. J. C. Kovacic, D. W. M. Muller, and R. M. Graham, “Actions and therapeutic potential of G-CSF and GM-CSF in cardiovascular disease,” Journal of Molecular and Cellular Cardiology, vol. 42, no. 1, pp. 19–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Shen, Y. Ye, L. Chen, Q. Yan, S. H. Barsky, and J. X. Gao, “Precancerous stem cells can serve as tumor vasculogenic progenitors,” PLoS ONE, vol. 3, no. 2, Article ID e1652, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Estrada, Q. Zeng, H. Lu et al., “Up-regulating sphingosine 1-phosphate receptor-2 signaling impairs chemotactic, wound-healing, and morphogenetic responses in senescent endothelial cells,” The Journal of Biological Chemistry, vol. 283, no. 44, pp. 30363–30375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Vogler, B. Sauer, D. S. Kim, M. Schäfer-Korting, and B. Kleuser, “Sphingosine-1-phosphate and its potentially paradoxical effects on critical parameters of cutaneous wound healing,” Journal of Investigative Dermatology, vol. 120, no. 4, pp. 693–700, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Kawanabe, T. Kawakami, Y. Yatomi, S. Shimada, and Y. Soma, “Sphingosine 1-phosphate accelerates wound healing in diabetic mice,” Journal of Dermatological Science, vol. 48, no. 1, pp. 53–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Hisano, N. Kobayashi, A. Yamaguchi, and T. Nishi, “Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells,” PloS One, vol. 7, Article ID e38941, 2012.
  89. C. Givens and E. Tzima, “S1P1 bridges mechanotransduction and angiogenesis during vascular development,” Developmental Cell, vol. 23, pp. 451–452, 2012.
  90. C. Tobia, P. Chiodelli, S. Nicoli, et al., “Sphingosine-1-phosphate receptor-1 controls venous endothelial barrier integrity in zebrafish,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, pp. e104–e116, 2012.
  91. K. M. Argraves, B. A. Wilkerson, W. S. Argraves, P. A. Fleming, L. M. Obeid, and C. J. Drake, “Sphingosine-1-phosphate signaling promotes critical migratory events in vasculogenesis,” The Journal of Biological Chemistry, vol. 279, no. 48, pp. 50580–50590, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. Y. Liu, R. Wada, T. Yamashita et al., “Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation,” Journal of Clinical Investigation, vol. 106, no. 8, pp. 951–961, 2000. View at Scopus
  93. H. M. Rosenfeldt, J. P. Hobson, S. Milstien, and S. Spiegel, “The sphingosine-1-phosphate receptor EDG-1 is essential for platelet-derived growth factor-induced cell motility,” Biochemical Society Transactions, vol. 29, no. 6, pp. 836–839, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. J. A. Manuel and B. Gawronska-Kozak, “Matrix metalloproteinase 9 (MMP-9) is upregulated during scarless wound healing in athymic nude mice,” Matrix Biology, vol. 25, no. 8, pp. 505–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. Liu, D. Min, T. Bolton et al., “Increased matrix metalloproteinase-9 predicts poor wound healing in diabetic foot ulcers,” Diabetes Care, vol. 32, no. 1, pp. 117–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. T. R. Kyriakides, D. Wulsin, E. A. Skokos et al., “Mice that lack matrix metalloproteinase-9 display delayed wound healing associated with delayed reepithelization and disordered collagen fibrillogenesis,” Matrix Biology, vol. 28, no. 2, pp. 65–73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. V. Masson, L. Rodriguez De La Ballina, C. Munaut et al., “Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes,” The FASEB Journal, vol. 19, no. 2, pp. 234–236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. D. Stenzel, C. A. Franco, S. Estrach, et al., “Endothelial basement membrane limits tip cell formation by inducing Dll4/Notch signalling in vivo,” EMBO Report, vol. 12, pp. 1135–1143, 2011.
  99. A. N. Stratman, K. M. Malotte, R. D. Mahan, M. J. Davis, and G. E. Davis, “Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation,” Blood, vol. 114, no. 24, pp. 5091–5101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. G. E. Davis and D. R. Senger, “Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization,” Circulation Research, vol. 97, no. 11, pp. 1093–1107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. B. Heissig, K. Hattori, M. Friedrich, S. Rafii, and Z. Werb, “Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases,” Current Opinion in Hematology, vol. 10, no. 2, pp. 136–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. B. Heissig, K. Hattori, S. Dias et al., “Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-ligand,” Cell, vol. 109, no. 5, pp. 625–637, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. G. Bergers, R. Brekken, G. McMahon et al., “Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis,” Nature Cell Biology, vol. 2, no. 10, pp. 737–744, 2000. View at Publisher · View at Google Scholar · View at Scopus
  104. Q. Yu and I. Stamenkovic, “Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis,” Genes and Development, vol. 14, no. 2, pp. 163–176, 2000. View at Scopus
  105. G. O. Ahn and J. M. Brown, “Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells,” Cancer Cell, vol. 13, no. 3, pp. 193–205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. P. H. Huang, Y. H. Chen, C. H. Wang et al., “Matrix metalloproteinase-9 is essential for ischemia-induced neovascularization by modulating bone marrow-derived endothelial progenitor cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 8, pp. 1179–1184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. P. E. Szmitko, P. W. M. Fedak, R. D. Weisel, D. J. Stewart, M. J. B. Kutryk, and S. Verma, “Endothelial progenitor cells: new hope for a broken heart,” Circulation, vol. 107, no. 24, pp. 3093–3100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. V. W. M. Van Hinsbergh, M. A. Engelse, and P. H. A. Quax, “Pericellular proteases in angiogenesis and vasculogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 4, pp. 716–728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. V. W. M. Van Hinsbergh and P. Koolwijk, “Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead,” Cardiovascular Research, vol. 78, no. 2, pp. 203–212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. J. E. Rundhaug, “Matrix metalloproteinases and angiogenesis,” Journal of Cellular and Molecular Medicine, vol. 9, no. 2, pp. 267–285, 2005. View at Scopus
  111. K. Kitisin, T. Saha, T. Blake et al., “Tgf-Beta signaling in development,” Science's STKE, vol. 2007, no. 399, p. cm1, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. B. J. Larson, M. T. Longaker, and H. P. Lorenz, “Scarless fetal wound healing: a basic science review,” Plastic and Reconstructive Surgery, vol. 126, no. 4, pp. 1172–1180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. P. ten Dijke and H. M. Arthur, “Extracellular control of TGF-beta signalling in vascular development and disease,” Nature Reviews Molecular Cell Biology, vol. 8, pp. 857–869, 2007.
  114. S. Fang, N. Pentinmikko, M. Ilmonen, and P. Salven, “Dual action of TGF-beta induces vascular growth in vivo through recruitment of angiogenic VEGF-producing hematopoietic effector cells,” Angiogenesis, vol. 15, pp. 511–519, 2012.
  115. C. Mallet, D. Vittet, J. J. Feige, and S. Bailly, “TGFβ1 induces vasculogenesis and inhibits angiogenic sprouting in an embryonic stem cell differentiation model: respective contribution of ALK1 and ALK5,” Stem Cells, vol. 24, no. 11, pp. 2420–2427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. X.-J. Wang, Z. Dong, X.-H. Zhong, et al., “Transforming growth factor-beta1 enhanced vascular endothelial growth factor synthesis in mesenchymal stem cells,” Biochemical and Biophysical Research Communications, vol. 365, pp. 548–554, 2008.
  117. H. Imamura, T. Ohta, K. Tsunetoshi et al., “Transdifferentiation of bone marrow-derived endothelial progenitor cells into the smooth muscle cell lineage mediated by tansforming growth factor-β1,” Atherosclerosis, vol. 211, no. 1, pp. 114–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. L. A. Fernandez, F. Sanz-Rodriguez, F. J. Blanco, C. Bernabéu, and L. M. Botella, “Hereditary hemorrhagic telangiectasia, a vascular dysplasia affecting the TGF-β signaling pathway,” Clinical Medicine and Research, vol. 4, no. 1, pp. 66–78, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Werner and R. Grose, “Regulation of wound healing by growth factors and cytokines,” Physiological Reviews, vol. 83, no. 3, pp. 835–870, 2003. View at Scopus
  120. S. Barrientos, O. Stojadinovic, M. S. Golinko, H. Brem, and M. Tomic-Canic, “Growth factors and cytokines in wound healing,” Wound Repair and Regeneration, vol. 16, no. 5, pp. 585–601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. R. C. Fang and R. D. Galiano, “A review of becaplermin gel in the treatment of diabetic neuropathic foot ulcers,” Biologics, vol. 2, pp. 1–12, 2008.
  122. N. Papanas and E. Maltezos, “Becaplermin gel in the treatment of diabetic neuropathic foot ulcers,” Clinical Interventions in Aging, vol. 3, no. 2, pp. 233–240, 2008. View at Scopus
  123. A. Gough, M. Clapperton, N. Rolando, A. V. M. Foster, J. Philpott-Howard, and M. E. Edmonds, “Randomised placebo-controlled trial of granulocyte-colony stimulating factor in diabetic foot infection,” The Lancet, vol. 350, no. 9081, pp. 855–859, 1997. View at Publisher · View at Google Scholar · View at Scopus
  124. F. De Lalla, G. Pellizzer, M. Strazzabosco et al., “Randomized prospective controlled trial of recombinant granulocyte colony-stimulating factor as adjunctive therapy for limb-threatening diabetic foot infection,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 4, pp. 1094–1098, 2001. View at Publisher · View at Google Scholar · View at Scopus
  125. R. Marques Da Costa, C. Aniceto, F. Miguel Jesus, and M. Mendes, “Quick healing of leg ulcers after molgramostim,” The Lancet, vol. 344, no. 8920, pp. 481–482, 1994. View at Scopus
  126. Z. Pojda and J. Struzyna, “Treatment of non-healing ulcers with rhGM-CSF and skin grafts,” The Lancet, vol. 343, no. 8905, p. 1100, 1994. View at Scopus
  127. M. Raderer, G. Kornek, M. Hejna, K. Koperna, W. Scheithauer, and W. Base, “Topical granulocyte-macrophage colony-stimulating factor in patients with cancer and impaired wound healing,” Journal of the National Cancer Institute, vol. 89, no. 3, p. 263, 1997. View at Scopus
  128. F. Arnold, J. O'Brien, and G. Cherry, “Granulocyte monocyte-colony stimulating factor as an agent for wound healing. A study evaluating the use of local injections of a genetically engineered growth factor in the management of wounds with a poor healing prognosis,” Journal of Wound Care, vol. 4, no. 9, pp. 400–402, 1995. View at Scopus
  129. R. Marques Da Costa, F. M. Jesus, C. Aniceto, and M. Mendes, “Double-blind randomized placebo-controlled trial of the use of granulocyte-macrophage colony-stimulating factor in chronic leg ulcers,” American Journal of Surgery, vol. 173, no. 3, pp. 165–168, 1997. View at Publisher · View at Google Scholar · View at Scopus
  130. D. P. Fivenson, D. T. Faria, B. J. Nickoloff et al., “Chemokine and inflammatory cytokine changes during chronic wound healing,” Wound Repair and Regeneration, vol. 5, no. 4, pp. 310–322, 1997. View at Scopus
  131. S. L. Drinkwater, K. G. Burnand, R. Ding, and A. Smith, “Increased but ineffectual angiogenic drive in nonhealing venous leg ulcers,” Journal of Vascular Surgery, vol. 38, no. 5, pp. 1106–1112, 2003. View at Publisher · View at Google Scholar · View at Scopus
  132. K. I. Hiasa, M. Ishibashi, K. Ohtani et al., “Gene transfer of stromal cell-derived factor-1α enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization,” Circulation, vol. 109, no. 20, pp. 2454–2461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. H. Iwaguro, J. I. Yamaguchi, C. Kalka et al., “Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration,” Circulation, vol. 105, no. 6, pp. 732–738, 2002. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Y. Rabbany, J. Pastore, M. Yamamoto et al., “Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing,” Cell Transplantation, vol. 19, no. 4, pp. 399–408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. P. W. Henderson, S. P. Singh, D. D. Krijgh et al., “Stromal-derived factor-1 delivered via hydrogel drug-delivery vehicle accelerates wound healing in vivo,” Wound Repair and Regeneration, vol. 19, no. 3, pp. 420–425, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. D. Hanjaya-Putra, K. T. Wong, K. Hirotsu, S. Khetan, J. A. Burdick, and S. Gerecht, “Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels,” Biomaterials, vol. 33, pp. 6123–6131, 2012.
  137. D. Hanjaya-Putra, V. Bose, Y. I. Shen et al., “Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix,” Blood, vol. 118, no. 3, pp. 804–815, 2011. View at Publisher · View at Google Scholar · View at Scopus