About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 192589, 10 pages
http://dx.doi.org/10.1155/2013/192589
Research Article

Characterization and Complete Sequence of Lactonase Enzyme from Bacillus weihenstephanensis Isolate P65 with Potential Activity against Acyl Homoserine Lactone Signal Molecules

Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, P.O. Box 11566, Abbassia, Cairo, Egypt

Received 17 April 2013; Revised 18 June 2013; Accepted 18 June 2013

Academic Editor: Anastasia Kotanidou

Copyright © 2013 Masarra Mohammed Sakr et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. H. Nealson and J. W. Hastings, “Bacterial bioluminescence: its control and ecological significance,” Microbiological Reviews, vol. 43, no. 4, pp. 496–518, 1979. View at Scopus
  2. C. Fuqua, M. R. Parsek, and E. P. Greenberg, “Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing,” Annual Review of Genetics, vol. 35, pp. 439–468, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. B. Miller and B. L. Bassler, “Quorum sensing in bacteria,” Annual Review of Microbiology, vol. 55, pp. 165–199, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. W. C. Fuqua, S. C. Winans, and E. P. Greenberg, “Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators,” Journal of Bacteriology, vol. 176, no. 2, pp. 269–275, 1994. View at Scopus
  5. T. R. De Kievit and B. H. Iglewski, “Bacterial quorum sensing in pathogenic relationships,” Infection and Immunity, vol. 68, no. 9, pp. 4839–4849, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. W. R. J. D. Galloway, J. T. Hodgkinson, S. D. Bowden, M. Welch, and D. R. Spring, “Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways,” Chemical Reviews, vol. 111, no. 1, pp. 28–67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Henke and B. L. Bassler, “Bacterial social engagements,” Trends in Cell Biology, vol. 14, no. 11, pp. 648–656, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Juhas, L. Eberl, and B. Tümmler, “Quorum sensing: the power of cooperation in the world of Pseudomonas,” Environmental Microbiology, vol. 7, no. 4, pp. 459–471, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. P. Diggle, S. A. West, A. Gardner, and A. S. Griffin, “Communication in bacteria,” in Sociobiology of Communication: An Interdisciplinary Perspective, P. d'Ettorre and D. P. Hughes, Eds., pp. 11–31, Oxford University Press, 2008.
  10. M. Schuster and E. P. Greenberg, “A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa,” International Journal of Medical Microbiology, vol. 296, no. 2-3, pp. 73–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. U. Viretta and M. Fussenegger, “Modeling the quorum sensing regulatory network of human-pathogenic Pseudomonas aeruginosa,” Biotechnology Progress, vol. 20, no. 3, pp. 670–678, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. C. van Delden and B. H. Iglewski, “Cell-to-cell signaling and Pseudomonas aeruginosa infections,” Emerging Infectious Diseases, vol. 4, no. 4, pp. 551–560, 1998. View at Scopus
  13. K. Poole, “Efflux-mediated multiresistance in Gram-negative bacteria,” Clinical Microbiology and Infection, vol. 10, no. 1, pp. 12–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Hentzer and M. Givskov, “Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections,” Journal of Clinical Investigation, vol. 112, no. 9, pp. 1300–1307, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. T. B. Rasmussen and M. Givskov, “Quorum-sensing inhibitors as anti-pathogenic drugs,” International Journal of Medical Microbiology, vol. 296, no. 2-3, pp. 149–161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. I. A. Khmel and A. Z. Metlitskaya, “Quorum sensing regulation of gene expression: a promising target for drugs against bacterial pathogenicity,” Molecular Biology, vol. 40, no. 2, pp. 169–182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Y.-H. Dong, J.-L. Xu, X.-Z. Li, and L.-H. Zhang, “AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 7, pp. 3526–3531, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. Y.-H. Dong, A. R. Gusti, Q. Zhang, J.-L. Xu, and L.-H. Zhang, “Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species,” Applied and Environmental Microbiology, vol. 68, no. 4, pp. 1754–1759, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. S. J. Lee, S.-Y. Park, J.-J. Lee, D.-Y. Yum, B.-T. Koo, and J.-K. Lee, “Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis,” Applied and Environmental Microbiology, vol. 68, no. 8, pp. 3919–3924, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. M. H. Kim, W.-C. Choi, H. O. Kang et al., “The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 49, pp. 17606–17611, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Czajkowski and S. Jafra, “Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules,” Acta Biochimica Polonica, vol. 56, no. 1, pp. 1–16, 2009. View at Scopus
  22. P. W. Thomas, E. M. Stone, A. L. Costello, D. L. Tierney, and W. Fast, “The quorum-quenching lactonase from Bacillus thuringiensis is a metalloprotein,” Biochemistry, vol. 44, no. 20, pp. 7559–7569, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. K. H. McClean, M. K. Winson, L. Fish et al., “Quorum sensing and chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones,” Microbiology, vol. 143, no. 12, pp. 3703–3711, 1997. View at Scopus
  24. L. Ravn, A. B. Christensen, S. Molin, M. Givskov, and L. Gram, “Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics,” Journal of Microbiological Methods, vol. 44, no. 3, pp. 239–251, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Boyer, R. Bally, S. Perrotto, C. Chaintreuil, and F. Wisniewski-Dyé, “A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum,” Research in Microbiology, vol. 159, no. 9-10, pp. 699–708, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Scopus
  27. Y. Cao, S. He, Z. Zhou et al., “Orally administered thermostable N-acyl homoserine lactonase from Bacillus sp. strain AI96 attenuates Aeromonas hydrophila infection in zebrafish,” Applied and Environmental Microbiology, vol. 78, no. 6, pp. 1899–1908, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Pospiech and B. Neumann, “A versatile quick-prep of genomic DNA from gram-positive bacteria,” Trends in Genetics, vol. 11, no. 6, pp. 217–218, 1995. View at Scopus
  29. J. Sambrook and D. W. Russell, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 3rd edition, 2001.
  30. R. Staden, “The staden sequence analysis package,” Applied Biochemistry and Biotechnology, vol. 5, no. 3, pp. 233–241, 1996. View at Scopus
  31. J. Ishikawa and K. Hotta, “FramePlot: a new implementation of the Frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content,” FEMS Microbiology Letters, vol. 174, no. 2, pp. 251–253, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Arnold, L. Bordoli, J. Kopp, and T. Schwede, “The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling,” Bioinformatics, vol. 22, no. 2, pp. 195–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Guex and M. C. Peitsch, “SWISS-MODEL and the Swiss-pdb viewer: an environment for comparative protein modeling,” Electrophoresis, vol. 18, no. 15, pp. 2714–2723, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Schwede, J. Kopp, N. Guex, and M. C. Peitsch, “SWISS-MODEL: an automated protein homology-modeling server,” Nucleic Acids Research, vol. 31, no. 13, pp. 3381–3385, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Benkert, M. Biasini, and T. Schwede, “Toward the estimation of the absolute quality of individual protein structure models,” Bioinformatics, vol. 27, no. 3, pp. 343–350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Chen, Z. Zhou, Y. Cao, Y. Bai, and B. Yao, “High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture,” Microbial Cell Factories, vol. 9, article 39, pp. 1–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. L.-H. Wang, L.-X. Weng, Y.-H. Dong, and L.-H. Zhang, “Specificity and enzyme kinetics of the quorum-quenching N-Acyl homoserine lactone lactonase (AHL-lactonase),” Journal of Biological Chemistry, vol. 279, no. 14, pp. 13645–13651, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Hiblot, G. Gotthard, E. Chabriere, and M. Elias, “Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus,” Plos One, vol. 7, no. 10, article e47028, 2012. View at Publisher · View at Google Scholar
  39. J. Momb, P. W. Thomas, R. M. Breece, D. L. Tierney, and W. Fast, “The quorum-quenching metallo-γ-lactonase from Bacillus thuringiensis exhibits a leaving group thio effect,” Biochemistry, vol. 45, no. 44, pp. 13385–13393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Elias, J. Dupuy, L. Merone et al., “Structural basis for natural lactonase and promiscuous phosphotriesterase activities,” Journal of Molecular Biology, vol. 379, no. 5, pp. 1017–1028, 2008. View at Publisher · View at Google Scholar · View at Scopus