About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 192986, 6 pages
http://dx.doi.org/10.1155/2013/192986
Research Article

Absorption of Hazardous Pollutants by a Medicinal Fern Blechnum orientale L.

1Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

Received 3 April 2013; Accepted 22 June 2013

Academic Editor: John B. Vincent

Copyright © 2013 Xiao-min Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Gurib-Fakim, “Medicinal plants: traditions of yesterday and drugs of tomorrow,” Molecular Aspects of Medicine, vol. 27, no. 1, pp. 1–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Y. Lai, Y. Y. Lim, and K. H. Kim, “Blechnum Orientale Linn—a fern with potential as antioxidant, anticancer and antibacterial agent,” BMC Complementary and Alternative Medicine, vol. 10, article 15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Kumar and S. Chattopadhyay, “DNA damage protecting activity and antioxidant potential of pudina extract,” Food Chemistry, vol. 100, no. 4, pp. 1377–1384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Hazra, S. Biswas, and N. Mandal, “Antioxidant and free radical scavenging activity of Spondias pinnata,” BMC Complementary and Alternative Medicine, vol. 8, pp. 63–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Vickers, “Botanical medicines for the treatment of cancer: rationale, overview of current data, and methodological considerations for Phase I and II trials,” Cancer Investigation, vol. 20, no. 7-8, pp. 1069–1079, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. CPC (Chinese Phamacopoeia Commission), Chinese Phamacopoeia, The Medicine Science and Technology Press of China, Beijing, China, 2011.
  7. A. Benjamin and V. S. Manickam, “Medicinal pteridophytes from the Western Ghats,” Indian Journal of Traditional Knowledge, vol. 6, pp. 611–618, 2007.
  8. M. J. Mithraja, J. M. Antonisamy, M. Mahesh, Z. M. Paul, and S. Jeeva, “Chemical diversity analysis on some selected medicinally important pteridophytes of Western Ghats, India,” Asian Pacific Journal of Tropical Biomedicine, vol. 2, no. 1, supplement, pp. S34–S39, 2012.
  9. H. Y. Lai, Y. Y. Lim, and K. H. Kim, “Potential dermal wound healing agent in Blechnum orientale Linn,” BMC Complementary and Alternative Medicine, vol. 11, article 62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. H. B. Wang, M. H. Wong, C. Y. Lan et al., “Uptake and accumulation of arsenic by 11 Pteris taxa from southern China,” Environmental Pollution, vol. 145, no. 1, pp. 225–233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Matschullat, “Arsenic in the geosphere—a review,” Science of the Total Environment, vol. 249, no. 1–3, pp. 297–312, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. W. Kuang, G. Y. Zhou, D. Z. Wen, and S. Z. Liu, “Heavy metals in bark of Pinus massoniana (Lamb.) as an indicator of atmospheric deposition near a smeltery at Qujiang, China,” Environmental Science and Pollution Research, vol. 14, no. 4, pp. 270–275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. F. F. Sun, D. Z. Wen, Y. W. Kuang, J. Li, J. Li, and W. Zuo, “Concentrations of heavy metals and polycyclic aromatic hydrocarbons in needles of Masson pine (Pinus massoniana L.) growing nearby different industrial sources,” Journal of Environmental Sciences, vol. 22, no. 7, pp. 1006–1013, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. CNEMC (China National Environmental Monitoring Centre), Background Values of Soil Elements in China, Environmental Science Press, Beijing, China, 1990.
  15. J. Yoon, X. Cao, Q. Zhou, and L. Q. Ma, “Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site,” Science of the Total Environment, vol. 368, no. 2-3, pp. 456–464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Q. Ma, K. M. Komar, C. Tu, W. Zhang, Y. Cai, and E. D. Kennelley, “A fern that hyperaccumulates arsenic,” Nature, vol. 409, p. 579, 2001.
  17. M. Srivastava, J. Santos, P. Srivastava, and L. Q. Ma, “Comparison of arsenic accumulation in 18 fern species and four Pteris vittata accessions,” Bioresource Technology, vol. 101, no. 8, pp. 2691–2699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. O. Olowoyo, E. Van Heerden, J. L. Fischer, and C. Baker, “Trace metals in soil and leaves of Jacaranda mimosifolia in Tshwane area, South Africa,” Atmospheric Environment, vol. 44, no. 14, pp. 1826–1830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. R. Oliva and A. J. F. Espinosa, “Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources,” Microchemical Journal, vol. 86, no. 1, pp. 131–139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. D. X. Yuan, D. N. Yang, L. W. Terry, and Y. R. Qian, “Status of persistent organic pollutants in the sediment from several estuaries in China,” Environmental Pollution, vol. 114, no. 1, pp. 101–111, 2001. View at Publisher · View at Google Scholar · View at Scopus