About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 194625, 11 pages
http://dx.doi.org/10.1155/2013/194625
Research Article

Effect of Linseed Oil Dietary Supplementation on Fatty Acid Composition and Gene Expression in Adipose Tissue of Growing Goats

1Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
4Division of Nutrition, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80151, 3508 TD Utrecht, The Netherlands

Received 18 October 2012; Revised 21 December 2012; Accepted 21 December 2012

Academic Editor: Andre Van Wijnen

Copyright © 2013 M. Ebrahimi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. I. Givens, “The role of animal nutrition in improving the nutritive value of animal-derived foods in relation to chronic disease,” Proceedings of the Nutrition Society, vol. 64, no. 3, pp. 395–402, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. K. W. J. Wahle, S. D. Heys, and D. Rotondo, “Conjugated linoleic acids: are they beneficial or detrimental to health?” Progress in Lipid Research, vol. 43, no. 6, pp. 553–587, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. B. Bessa, P. V. Portugal, I. A. Mendes, and J. Santos-Silva, “Effect of lipid supplementation on growth performance, carcass and meat quality and fatty acid composition of intramuscular lipids of lambs fed dehydrated lucerne or concentrate,” Livestock Production Science, vol. 96, no. 2-3, pp. 185–194, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. M. Goh, Dietary manipulations using oil palm (Elaeis guineensis) fronds to increase the unsaturated fatty acid content of mutton under tropical conditions [Ph.D. thesis], Universiti Putra Malaysia, Selangor, Malaysia, 2002.
  5. M. Ebrahim, Production of omega-3 enriched chevon through diets supplemented with oil palm (Elaeis guineensis) fronds [M.S. thesis], Universiti Putra Malaysia, Selangor, Malaysia, 2009.
  6. J. Santos-Silva, I. A. Mendes, P. V. Portugal, and R. J. B. Bessa, “Effect of particle size and soybean oil supplementation on growth performance, carcass and meat quality and fatty acid composition of intramuscular lipids of lambs,” Livestock Production Science, vol. 90, no. 2-3, pp. 79–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Demirel, A. M. Wachira, L. A. Sinclair, R. G. Wilkinson, J. D. Wood, and M. Enser, “Effects of dietary n-3 polyunsaturated fatty acids, breed and dietary vitamin E on the fatty acids of lamb muscle, liver and adipose tissue,” The British Journal of Nutrition, vol. 91, no. 4, pp. 551–565, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. M. Wachira, L. A. Sinclair, R. G. Wilkinson, M. Enser, J. D. Wood, and A. V. Fisher, “Effects of dietary fat source and breed on the carcass composition, n-3 polyunsaturated fatty acid and conjugated linoleic acid content of sheep meat and adipose tissue,” The British Journal of Nutrition, vol. 88, no. 6, pp. 697–709, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. R. J. B. Bessa, S. P. Alves, E. Jerónimo, C. M. Alfaia, J. A. M. Prates, and J. Santos-Silva, “Effect of lipid supplements on ruminal biohydrogenation intermediates and muscle fatty acids in lambs,” European Journal of Lipid Science and Technology, vol. 109, no. 8, pp. 868–878, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. L. Cooper, L. A. Sinclair, R. G. Wilkinson, K. G. Hallett, M. Enser, and J. D. Wood, “Manipulation of the n-3 polyunsaturated fatty acid content of muscle and adipose tissue in lambs,” Journal of Animal Science, vol. 82, no. 5, pp. 1461–1470, 2004. View at Scopus
  11. N. S. Kelley, N. E. Hubbard, and K. L. Erickson, “Alteration of human body composition and tumorigenesis by isomers of conjugated linoleic acid,” Modern Dietary Fat Intakes in Disease Promotion, pp. 121–131, 2010.
  12. C. G. Harfoot and G. P. Hazelwood, “Lipid metabolism in the rumen,” in The Rumen Microbial Ecosystem, pp. 382–426, Elsevier Science Publishing, London, UK, 1997.
  13. J. M. Griinari, B. A. Corl, S. H. Lacy, P. Y. Chouinard, K. V. V. Nurmela, and D. E. Bauman, “Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by δ9-desaturase,” Journal of Nutrition, vol. 130, no. 9, pp. 2285–2291, 2000. View at Scopus
  14. A. de la Torre, D. Gruffat, D. Durand et al., “Factors influencing proportion and composition of CLA in beef,” Meat Science, vol. 73, no. 2, pp. 258–268, 2006.
  15. A. P. Moloney, C. Kennedy, F. Noci, F. J. Monahan, and J. P. Kerry, “Lipid and colour stability of m. longissimus muscle from lambs fed camelina or linseed as oil or seeds,” Meat Science, vol. 92, no. 1, pp. 1–7, 2012. View at Publisher · View at Google Scholar
  16. F. Noci, P. French, F. J. Monahan, and A. P. Moloney, “The fatty acid composition of muscle fat and subcutaneous adipose tissue of grazing heifers supplemented with plant oil-enriched concentrates,” Journal of Animal Science, vol. 85, no. 4, pp. 1062–1073, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. P. Simopoulos, “Evolutionary aspects of diet, the ω-6/ω-3 ratio and genetic variation: nutritional implications for chronic diseases,” Biomedicine and Pharmacotherapy, vol. 60, no. 9, pp. 502–507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Igarashi, K. Ma, L. Chang, J. M. Bell, and S. I. Rapoport, “Dietary n-3 PUFA deprivation for 15 weeks upregulates elongase and desaturase expression in rat liver but not brain,” Journal of Lipid Research, vol. 48, no. 11, pp. 2463–2470, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Sampath and J. M. Ntambi, “Polyunsaturated fatty acid regulation of genes of lipid metabolism,” Annual Review of Nutrition, vol. 25, pp. 317–340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Hajar, Y. M. Goh, M. A. Rajion et al., “Omega 3 polyunsaturated fatty acid improves spatial learning and hippocampal peroxisome proliferator activated receptors (PPARα and PPARγ) gene expression in rats,” BMC Neuroscience, vol. 13, no. 1, article 109, 2012. View at Publisher · View at Google Scholar
  21. D. E. Graugnard, P. Piantoni, M. Bionaz, L. L. Berger, D. B. Faulkner, and J. J. Loor, “Adipogenic and energy metabolism gene networks in Longissimus lumborum during rapid post-weaning growth in Angus and Angus × Simmental cattle fed high-starch or low-starch diets,” BMC Genomics, vol. 10, article 142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. M. Waters, J. P. Kelly, P. O'Boyle, A. P. Moloney, and D. A. Kenny, “Effect of level and duration of dietary n-3 polyunsaturated fatty acid supplementation on the transcriptional regulation of Δ9-desaturase in muscle of beef cattle,” Journal of Animal Science, vol. 87, no. 1, pp. 244–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Ntambi, “Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol,” Journal of Lipid Research, vol. 40, no. 9, pp. 1549–1558, 1999. View at Scopus
  24. NRC, Nutrient Requirements of Small Ruminant, National Academy Press, Washington, DC, USA, 6th edition, 2007.
  25. AOAC, Official Methods of Analysis, edited by K. Herlick, Association of Official Analytical Chemists, Arlington, Va, USA, 15th edition, 1990.
  26. P. J. van Soest, J. B. Robertson, and B. A. Lewis, “Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition,” Journal of Dairy Science, vol. 74, no. 10, pp. 3583–3597, 1991. View at Scopus
  27. J. Folch, M. Lees, and G. H. Sloane Stanely, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957. View at Scopus
  28. M. A. Rajion, J. G. McLean, and R. N. Cahill, “Essential fatty acids in the fetal and newborn lamb,” Australian Journal of Biological Sciences, vol. 38, no. 1, pp. 33–40, 1985. View at Scopus
  29. M. Ebrahimi, M. A. Rajion, Y. M. Goh, and A. Q. Sazili, “Impact of different inclusion levels of oil palm (Elaeis guineensis Jacq.) fronds on fatty acid profiles of goat muscles,” Journal of Animal Physiology and Animal Nutrition, vol. 96, no. 6, pp. 962–969, 2012. View at Publisher · View at Google Scholar
  30. E. Dervishi, C. Serrano, M. Joy, M. Serrano, C. Rodellar, and J. H. Calvo, “The effect of feeding system in the expression of genes related with fat metabolism in semitendinous muscle in sheep,” Meat Science, vol. 89, no. 1, pp. 91–97, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. C. G. Harfoot, R. C. Noble, and J. H. Moore, “Factors influencing the extent of biohydrogenation of linoleic acid by rumen micro-organisms in vitro,” Journal of the Science of Food and Agriculture, vol. 24, no. 8, pp. 961–970, 1973. View at Scopus
  32. C. M. Kim, J. H. Kim, Y. K. Oh et al., “Effects of flaxseed diets on performance, carcass characteristics and fatty acid composition of Hanwoo steers,” Asian-Australasian Journal of Animal Sciences, vol. 22, no. 8, pp. 1151–1159, 2009. View at Scopus
  33. M. Igarashi, F. Gao, H. W. Kim, K. Ma, J. M. Bell, and S. I. Rapoport, “Dietary n-6 PUFA deprivation for 15weeks reduces arachidonic acid concentrations while increasing n-3 PUFA concentrations in organs of post-weaning male rats,” Biochimica et Biophysica Acta, vol. 1791, no. 2, pp. 132–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. C. M. Kim, J. H. Kim, T. Y. Chung, and K. K. Park, “Effects of flaxseed diets on fattening response of Hanwoo cattle: 2. Fatty acid composition of serum and adipose tissues,” Asian-Australasian Journal of Animal Sciences, vol. 17, no. 9, pp. 1246–1254, 2004. View at Scopus
  35. E. Jerónimo, S. P. Alves, J. A. M. Prates, J. Santos-Silva, and R. J. B. Bessa, “Effect of dietary replacement of sunflower oil with linseed oil on intramuscular fatty acids of lamb meat,” Meat Science, vol. 83, no. 3, pp. 499–505, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. G. C. Burdge and P. C. Calder, “α-linolenic acid metabolism in adult humans: the effects of gender and age on conversion to longer-chain polyunsaturated fatty acids,” European Journal of Lipid Science and Technology, vol. 107, no. 6, pp. 426–439, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Raes, S. De Smet, and D. Demeyer, “Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a review,” Animal Feed Science and Technology, vol. 113, no. 1–4, pp. 199–221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. A. P. Simopoulos, “Importance of the omega-6/omega-3 balance in health and disease: evolutionary aspects of diet,” Healthy Agriculture, Healthy Nutrition, Healthy People, vol. 102, pp. 10–21, 2011. View at Publisher · View at Google Scholar
  39. A. P. Simopoulos, “Omega-6/omega-3 essential fatty acid ratio and chronic diseases,” Food Reviews International, vol. 20, no. 1, pp. 77–90, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. L. A. Sinclair, “Nutritional manipulation of the fatty acid composition of sheep meat: a review,” Journal of Agricultural Science-Cambridge, vol. 145, no. 5, pp. 419–434, 2007. View at Publisher · View at Google Scholar
  41. H. Osmundsen, J. Bremer, and J. I. Pedersen, “Metabolic aspects of peroxisomal β-oxidation,” Biochimica et Biophysica Acta, vol. 1085, no. 2, pp. 141–158, 1991. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Pawar and B. J. Donald, “Unsaturated fatty acid regulation of peroxisome proliferator-activated receptor alpha activity in rat primary hepatocytes,” The Journal of Biological Chemistry, vol. 278, no. 38, pp. 35931–35939, 2003. View at Publisher · View at Google Scholar
  43. H. Al-Hasani and H. G. Joost, “Nutrition-/diet-induced changes in gene expression in white adipose tissue,” Best Practice and Research: Clinical Endocrinology and Metabolism, vol. 19, no. 4, pp. 589–603, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Chiarelli and D. Di Marzio, “Peroxisome proliferator-activated receptor-γ agonists and diabetes: current evidence and future perspectives,” Vascular Health and Risk Management, vol. 4, no. 2, pp. 297–304, 2008. View at Scopus
  45. P. Tontonoz and M. S. Bruce, “Fat and beyond: the diverse biology of PPARγ,” Annual Review of Biochemistry, vol. 77, no. 1, pp. 289–312, 2008. View at Publisher · View at Google Scholar
  46. S. P. Kaplins'kyĭ, A. M. Shysh, V. S. Nahibin, V. I. Dosenko, V. M. Klimashevs'kyĭ, and O. O. Moĭbenko, “Omega-3 polyunsaturated fatty acids stimulate the expression of PPAR target genes,” Fiziolohichnyĭ Zhurnal, vol. 55, no. 2, pp. 37–43, 2009. View at Scopus
  47. S. É. Michaud and G. Renier, “Direct regulatory effect of fatty acids on macrophage lipoprotein lipase: potential role of PPARs,” Diabetes, vol. 50, no. 3, pp. 660–666, 2001. View at Scopus
  48. J. M. Ntambi and M. Miyazaki, “Regulation of stearoyl-CoA desaturases and role in metabolism,” Progress in Lipid Research, vol. 43, no. 2, pp. 91–104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. H. J. Kim, M. Miyazaki, and J. M. Ntambi, “Dietary cholesterol opposes PUFA-mediated repression of the stearoyl-CoA desaturase-1 gene by SREBP-1 independent mechanism,” Journal of Lipid Research, vol. 43, no. 10, pp. 1750–1757, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. Z. C. T. R. Daniel, R. J. Wynn, A. M. Salter, and P. J. Buttery, “Differing effects of forage and concentrate diets on the oleic acid and conjugated linoleic acid content of sheep tissues: the role of stearoyl-CoA desaturase,” Journal of Animal Science, vol. 82, no. 3, pp. 747–758, 2004. View at Scopus
  51. A. M. Sessler, N. Kaur, J. P. Palta, and J. M. Ntamb, “Regulation of stearoyl-CoA desaturase 1 mRNA stability by polyunsaturated fatty acids in 3T3-L1 adipocytes,” Journal of Biological Chemistry, vol. 271, no. 47, pp. 29854–29858, 1996. View at Publisher · View at Google Scholar · View at Scopus
  52. R. J. Dewhurst, N. D. Scollan, M. R. F. Lee, H. J. Ougham, and M. O. Humphreys, “Forage breeding and management to increase the beneficial fatty acid content of ruminant products,” Proceedings of the Nutrition Society, vol. 62, no. 2, pp. 329–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Bellinger, C. Lilley, and S. C. Langley-Evans, “Prenatal exposure to a maternal low-protein diet programmes a preference for high-fat foods in the young adult rat,” The British Journal of Nutrition, vol. 92, no. 3, pp. 513–520, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Eeckhoute, O. Frédérik, S. Bart, and L. Philippe, “Coordinated regulation of PPARγ expression and activity through control of chromatin structure in adipogenesis and obesity,” PPAR Research, vol. 2012, Article ID 164140, 9 pages, 2012. View at Publisher · View at Google Scholar
  55. C. W. Miller and J. M. Ntambi, “Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 18, pp. 9443–9448, 1996. View at Publisher · View at Google Scholar · View at Scopus
  56. R. J. Deckelbaum and C. Torrejon, “The omega-3 fatty acid nutritional landscape: health benefits and sources,” The Journal of Nutrition, vol. 142, no. 3, pp. 587S–591S, 2012. View at Publisher · View at Google Scholar
  57. J. MacRae, L. O'Reilly, and P. Morgan, “Desirable characteristics of animal products from a human health perspective,” Livestock Production Science, vol. 94, no. 1-2, pp. 95–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Dilzer and Y. Park, “Implication of conjugated linoleic acid (CLA) in human health,” Critical Reviews in Food Science and Nutrition, vol. 52, no. 6, pp. 488–513, 2012. View at Publisher · View at Google Scholar
  59. A. M. Turpeinen, M. Mutanen, A. Aro et al., “Bioconversion of vaccenic acid to conjugated linoleic acid in humans,” American Journal of Clinical Nutrition, vol. 76, no. 3, pp. 504–510, 2002. View at Scopus