About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 196894, 7 pages
http://dx.doi.org/10.1155/2013/196894
Research Article

Demethylation of Cancer/Testis Antigens and CpG ODN Stimulation Enhance Dendritic Cell and Cytotoxic T Lymphocyte Function in a Mouse Mammary Model

1Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
2Department of Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
3Department of Pharmacy, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
4Department of Hematology, China-Japan Friendship Hospital, Beijing 100029, China
5No. 535 Hospital of Chinese People’s Liberation Army, Huaihua, Hunan 418000, China

Received 28 April 2013; Accepted 2 August 2013

Academic Editor: Anne Hamburger

Copyright © 2013 Jun-Zhong Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Risk and J. M. Corman :, “The role of immunotherapy in prostate cancer: an overview of current approaches in development,” Reviews in Urology, vol. 11, no. 1, pp. 16–27, 2009.
  2. S. Nagaraj, K. Gupta, V. Pisarev et al., “Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer,” Nature Medicine, vol. 13, no. 7, pp. 828–835, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. C. LeGuern, “Tolerogenic property of MHC class I and class II molecules: lessons from a gene therapy approach,” Frontiers in Bioscience, vol. 12, no. 8, pp. 3133–3139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Bode, G. Zhao, F. Steinhagen, T. Kinjo, and D. M. Klinman, “CpG DNA as a vaccine adjuvant,” Expert Review of Vaccines, vol. 10, no. 4, pp. 499–511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. O. Hofmann, O. L. Caballero, B. J. Stevenson et al., “Genome-wide analysis of cancer/testis gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 51, pp. 20422–20427, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. A. Rosenberg and M. E. Dudley, “Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 2, pp. 14639–14645, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Roychowdhury, K. F. May Jr., K. S. Tzou et al., “Failed adoptive immunotherapy with tumor-specific T cells: reversal with low-dose interleukin 15 but not low-dose interleukin 2,” Cancer Research, vol. 64, no. 21, pp. 8062–8067, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Nishida, T. Nishimura, T. Nagasaka, I. Ikai, A. Goel, and C. R. Boland, “Extensive methylation is associated with β-catenin mutations in hepatocellular carcinoma: evidence for two distinct pathways of human hepatocarcinogenesis,” Cancer Research, vol. 67, no. 10, pp. 4586–4594, 2007.
  9. R. B. Anderson, G. J. Cianciolo, M. N. Kennedy, and S. V. Pizzo, “α2-Macroglobulin binds CpG oligodeoxynucleotides and enhances their immunostimulatory properties by a receptor-dependent mechanism,” Journal of Leukocyte Biology, vol. 83, no. 2, pp. 381–392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. S. Guo, J. A. Hong, K. R. Irvine et al., “De novo induction of a cancer/testis antigen by 5-aza-2′-deoxycytidine augments adoptive immunotherapy in a murine tumor model,” Cancer Research, vol. 66, no. 2, pp. 1105–1113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Yu, C. Liu, J. Vandeusen et al., “Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia,” Nature Genetics, vol. 37, no. 3, pp. 265–274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Lašt'ovička, V. Budinský, R. Špíšek, and J. Bartůňková, “Assessment of lymphocyte proliferation: CFSE kills dividing cells and modulates expression of activation markers,” Cellular Immunology, vol. 256, no. 1-2, pp. 79–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. N. T. Ueno, C. Bartholomeusz, W. Xia et al., “Systemic gene therapy in human xenograft tumor models by liposomal delivery of the E1A gene,” Cancer Research, vol. 62, no. 22, pp. 6712–6716, 2002. View at Scopus
  14. M. Tanaka, T. Obata, and T. Sasaki, “Evaluation of antitumour effects of docetaxel (Taxotere) on human gastric cancers in vitro and in vivo,” European Journal of Cancer, vol. 32, no. 2, pp. 226–230, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. H. F. Huang, Y. Z. Chen, Y. Wu, and P. Chen, “Purging of murine erythroblastic leukemia by ZnPcS2 P2-based-photodynamic therapy,” Bone Marrow Transplantation, vol. 37, no. 2, pp. 213–217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. Miller and P. Pisa, “Tumor escape mechanisms in prostate cancer,” Cancer Immunology, Immunotherapy, vol. 56, no. 1, pp. 81–87, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. A. Rosenberg, “Overcoming obstacles to the effective immunotherapy of human cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 12643–12644, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Hackanson, Y. Guo, and M. Lübbert, “The silence of the genes: epigenetic disturbances in haemotopoietic malignancies,” Expert Opinion on Therapeutic Targets, vol. 9, no. 1, pp. 45–61, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. T. K. Hoffmann, K. Nakano, E. M. Elder et al., “Generation of T cells specific for the wild-type sequence p53264-272 peptide in cancer patients: implications for immunoselection of epitope loss variants,” Journal of Immunology, vol. 165, no. 10, pp. 5938–5944, 2000. View at Scopus
  20. M. Bermudez-Brito, S. Muñoz-Quezada, C. Gomez-Llorente et al., “Human intestinal dendritic cells decrease cytokine release against salmonella infection in the presenceof Lactobacillus paracasei upon TLR activation,” PLoS One, vol. 7, no. 8, Article ID e43197, 2012.
  21. A. M. Krieg, “Toll-like receptor 9 (TLR9) agonists in the treatment of cancer,” Oncogene, vol. 27, no. 2, pp. 161–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Perreau, H. C. Welles, C. Pellaton et al., “The number of Toll-like receptor 9-agonist motifs in the adenovirus genome correlates with induction of dendritic cell maturation by adenovirus immune complexes,” Journal of Virology, vol. 86, no. 11, pp. 6279–6285, 2012. View at Publisher · View at Google Scholar
  23. A. R. Hersperger, J. N. Martin, L. Y. Shin et al., “Increased HIV-specific CD8+ T-cell cytotoxic potential in HIV elite controllers is associated with T-bet expression,” Blood, vol. 117, no. 14, pp. 3799–3808, 2011. View at Publisher · View at Google Scholar · View at Scopus