About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 202818, 8 pages
Research Article

Amikacin Population Pharmacokinetics in Critically Ill Kuwaiti Patients

1Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Kuwait City 13110, Kuwait
2Department of Pharmacy, Al-Amiri Hospital, Ministry of Health, P.O. Box 491, Kuwait City 32005, Kuwait
3Intensive Care Unit, Al-Amiri Hospital, Ministry of Health, P.O. Box 491, Kuwait City 32005, Kuwait
4Laboratory of Applied Pharmacokinetics, School of Medicine, University of Southern California, Los Angeles, CA 90033, USA

Received 19 September 2012; Revised 30 November 2012; Accepted 30 November 2012

Academic Editor: Abdelwahab Omri

Copyright © 2013 Kamal M. Matar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Kummana and K. Yuen, “Parenteral aminoglycoside therapy. Selection, administrationandmonitoring,” Drugs, vol. 47, pp. 902–913, 1994.
  2. S. M. Erdman, K. A. Rodvold, and R. D. Pryka, “An updated comparison of drug dosing methods. Part III: aminoglycoside antibiotics,” Clinical Pharmacokinetics, vol. 20, no. 5, pp. 374–388, 1991. View at Scopus
  3. M. J. Beckhouse, I. M. Whyte, P. L. Byth, J. C. Napier, and A. J. Smith, “Altered aminoglycoside pharmacokinetics in the critically ill,” Anaesthesia and Intensive Care, vol. 16, no. 4, pp. 418–422, 1988. View at Scopus
  4. M. D. M. F. De Gatta, S. R. Moreno, M. V. Calvo, R. Ardanuy, A. Domínguez-Gil, and J. M. Lanao, “Evaluation of population pharmacokinetic models for amikacin dosage individualization in critically ill patients,” Journal of Pharmacy and Pharmacology, vol. 61, no. 6, pp. 759–766, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Roberts and J. Lipman, “Antibacterial dosing in intensive care: pharmacokinetics, degree of disease and pharmacodynamics of sepsis,” Clinical Pharmacokinetics, vol. 45, no. 8, pp. 756–773, 2006. View at Scopus
  6. F. Pea, P. Viale, and M. Furlanut, “Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability,” Clinical Pharmacokinetics, vol. 44, no. 10, pp. 1009–1034, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Mehrotra, R. De Gaudio, and M. Palazzo, “Antibiotic pharmacokinetic and pharmacodynamic considerations in critical illness,” Intensive Care Medicine, vol. 30, no. 12, pp. 2145–2156, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Jelliffe, “Estimation of creatinine clearance in patients with unstable renal function, withoutaurinespecimen,” American Journal of Nephrology, vol. 22, pp. 320–324, 2002.
  9. A. Bustad, D. Terziivanov, R. Leary, R. Port, A. Schumitzky, and R. Jelliffe, “Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies,” Clinical Pharmacokinetics, vol. 45, no. 4, pp. 365–383, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. S. Jhee, J. P. Burm, and M. A. Gill, “Comparison of aminoglycoside pharmacokinetics in Asian, Hispanic, and Caucasian patients by using population pharmacokinetic methods,” Antimicrobial Agents and Chemotherapy, vol. 38, no. 9, pp. 2073–2077, 1994. View at Scopus
  11. I. Domke, P. Cremer, and M. Huchtemann, “Therapeutic drug monitoring on COBAS INTEGRA 400—evaluation results,” Clinical Laboratory, vol. 46, no. 9-10, pp. 509–515, 2000. View at Scopus
  12. R. W. Jelliffe, A. Schumitzky, D. Bayard et al., “Model-based, goal-oriented, individualised drug therapy. Linkage of population modelling, new “Multiple Model” dosage design, Bayesian feedback and individualised target goals,” Clinical Pharmacokinetics, vol. 34, no. 1, pp. 57–77, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. L. B. Sheiner and S. L. Beal, “Some suggestions for measuring predictive performance,” Journal of Pharmacokinetics and Biopharmaceutics, vol. 9, no. 4, pp. 503–512, 1981. View at Publisher · View at Google Scholar · View at Scopus
  14. D. E. Zaske, R. G. Strate, and P. R. Kohls, “Amikacin pharmacokinetics: wide interpatient variation in 98 patients,” Journal of Clinical Pharmacology, vol. 31, no. 2, pp. 158–163, 1991. View at Scopus
  15. T. Gauthier, B. Lacarelle, F. Marre, P. H. Villard, J. Catalin, and A. Durand, “Predictive performance of two software packages (USC*PACK PC and Abbott PKS system) for the individualization of amikacin dosage in intensive care unit patients,” International Journal of Bio-Medical Computing, vol. 36, no. 1-2, pp. 131–134, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Lugo and G. Castaňeda-Hernândez, “Amikacin Bayesian forecasting in critically ill patients with sepsis and cirrhosis,” Ther Drug Monit, vol. 19, pp. 271–276, 1997.
  17. J. Debord, C. Pessis, J. C. Voultoury et al., “Population pharmacokinetics of amikacin in intensive care unit patients studied by NPEM algorithm,” Fundamental and Clinical Pharmacology, vol. 9, no. 1, pp. 57–61, 1995. View at Scopus
  18. J. Debord, J. Voultoury, G. Lachâtre, C. Gay, J. Favereau, and R. Gay, “Population pharmacokinetic paramters for Bayesian monitoring of amikacintherapy in intensive care unit patients,” European Journal of Clinical Pharmacology, vol. 43, pp. 435–436, 1992.
  19. D. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models, Prentice-Hall, Englewood Cliffs, NJ, USA, 1987.