About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 203735, 10 pages
http://dx.doi.org/10.1155/2013/203735
Review Article

β-Glucosidases from the Fungus Trichoderma: An Efficient Cellulase Machinery in Biotechnological Applications

1Metabolic and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, Uttar Pradesh, India
2Department of Biotechnology, UP Technical University, Lucknow 226021, Uttar Pradesh, India

Received 8 May 2013; Accepted 15 June 2013

Academic Editor: Arzu Coleri Cihan

Copyright © 2013 Pragya Tiwari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

β-glucosidases catalyze the selective cleavage of glucosidic linkages and are an important class of enzymes having significant prospects in industrial biotechnology. These are classified in family 1 and family 3 of glycosyl hydrolase family. β-glucosidases, particularly from the fungus Trichoderma, are widely recognized and used for the saccharification of cellulosic biomass for biofuel production. With the rising trends in energy crisis and depletion of fossil fuels, alternative strategies for renewable energy sources need to be developed. However, the major limitation accounts for low production of β-glucosidases by the hyper secretory strains of Trichoderma. In accordance with the increasing significance of β-glucosidases in commercial applications, the present review provides a detailed insight of the enzyme family, their classification, structural parameters, properties, and studies at the genomics and proteomics levels. Furthermore, the paper discusses the enhancement strategies employed for their utilization in biofuel generation. Therefore, β-glucosidases are prospective toolbox in bioethanol production, and in the near future, it might be successful in meeting the requirements of alternative renewable sources of energy.