About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 203735, 10 pages
http://dx.doi.org/10.1155/2013/203735
Review Article

β-Glucosidases from the Fungus Trichoderma: An Efficient Cellulase Machinery in Biotechnological Applications

1Metabolic and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, Uttar Pradesh, India
2Department of Biotechnology, UP Technical University, Lucknow 226021, Uttar Pradesh, India

Received 8 May 2013; Accepted 15 June 2013

Academic Editor: Arzu Coleri Cihan

Copyright © 2013 Pragya Tiwari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. E. Akinola, O. T. Olonila, and B. C. Adebayo-Tayo, “Production of cellulases by Trichoderma species,” Academia Arena, vol. 4, no. 12, pp. 27–37, 2012.
  2. X. Liming and S. Xueliang, “High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue,” Bioresource Technology, vol. 91, no. 3, pp. 259–262, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Chauve, H. Mathis, D. Huc, D. Casanave, F. Monot, and N. L. Ferreira, “Comparative kinetic analysis of two fungal β-glucosidases,” Biotechnology for Biofuels, vol. 3, article 3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Béguin, “Molecular biology of cellulose degradation,” Annual Review of Microbiology, vol. 44, pp. 219–248, 1990. View at Scopus
  5. J. Lin, B. Pillay, and S. Singh, “Purification and biochemical characteristics of β-D-glucosidase from a thermophilic fungus, Thermomyces lanuginosus-SSBP,” Biotechnology and Applied Biochemistry, vol. 30, no. 1, pp. 81–87, 1999. View at Scopus
  6. B. Henrissat, H. Driguez, C. Viet, et al., “Synergism of cellulases from Trichoderma reesei in the degradation of cellulose,” Biotechnology, vol. 3, pp. 722–726, 1985.
  7. Y. W. Han and V. R. Srinivasan, “Purification and characterization of beta-glucosidase of Alcaligenes faecalis,” Journal of Bacteriology, vol. 100, no. 3, pp. 1355–1363, 1969. View at Scopus
  8. V. Deshpande, K. E. Eriksson, and B. Pettersson, “Production, purification and partial characterization of 1,4-β-glucosidase enzymes from Sporotrichum pulverulentum,” European Journal of Biochemistry, vol. 90, no. 1, pp. 191–198, 1978. View at Scopus
  9. L. W. Fleming and J. D. Duerksen, “Purification and characterization of yeast beta-glucosidases,” Journal of Bacteriology, vol. 93, no. 1, pp. 135–141, 1967. View at Scopus
  10. R. Heyworth and P. G. Walker, “Almond-emulsin beta-D-glucosidase and beta-D-galactosidase,” The Biochemical Journal, vol. 83, pp. 331–335, 1962. View at Scopus
  11. S. K. Mishra, N. S. Sangwan, and R. S. Sangwan, “Physico-kinetic and functional features of a novel β-glucosidase isolated from milk thistle (Silybum marianum Gaertn.) flower petals,” Journal of Plant Biochemistry and Biotechnology, 2013. View at Publisher · View at Google Scholar
  12. S. K. Mishra, N. S. Sangwan, and R. S. Sangwan, “Comparative physico-kinetic properties of a homogenous purified β-glucosidase from Withania somnifera leaf,” Acta Physiologiae Plantarum, vol. 35, pp. 1439–1451, 2013.
  13. S. K. Mishra, N. S. Sangwan, and R. S. Sangwan, “Purification and characterization of a gluconolactone inhibition-insensitive β-glucosidase from Andrographis paniculata nees. leaf,” Preparative Biochemistry and Biotechnology, vol. 43, no. 5, pp. 481–499, 2013. View at Publisher · View at Google Scholar
  14. L. G. McMahon, H. Nakano, M.-D. Levy, and J. F. Gregory III, “Cytosolic pyridoxine-β-D-glucoside hydrolase from porcine jejunal mucosa. Purification, properties, and comparison with broad specificity β- glucosidase,” Journal of Biological Chemistry, vol. 272, no. 51, pp. 32025–32033, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Uusitalo, K. M. H. Nevalainen, A. M. Harkki, J. K. C. Knowles, and M. E. Penttila, “Enzyme production by recombinant Trichoderma reesei strains,” Journal of Biotechnology, vol. 17, no. 1, pp. 35–49, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Steinberg, P. Vijayakumar, and E. T. Reese, “β Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose,” Canadian Journal of Microbiology, vol. 23, no. 2, pp. 139–147, 1977. View at Scopus
  17. T. M. Enari and M. L. Niku-Paavola, “Enzymatic hydrolysis of cellulose: is the current theory of the mechanism of hydrolysis valid?” Critical Reviews in Biotechnology, vol. 5, pp. 67–87, 1987.
  18. T. Yazaki, M. Ohnishi, S. Rokushika, and G. Okada, “Subsite structure of the β-glucosidase from Aspergillus niger, evaluated by steady-state kinetics with cello-oligosaccharides as substrates,” Carbohydrate Research, vol. 298, no. 1-2, pp. 51–57, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Khan and M. W. Akhtar, “The biotechnological perspective of beta-glucosidases,” Nature Preceedings, 2010. View at Publisher · View at Google Scholar
  20. B. Brzobohaty, I. Moore, P. Kristoffersen et al., “Release of active cytokinin by a β-glucosidase localized to the maize root meristem,” Science, vol. 262, no. 5136, pp. 1051–1054, 1993. View at Scopus
  21. A. Easen, β-Glucosidases. Biochemistry and Molecular Biology, American Chemical Society, Washington, DC, USA, 1993.
  22. M. Mandels, “Cellulases,” Annual Reports on Fermentation Processes, vol. 5, pp. 35–78, 1982.
  23. J. Woodward and A. Wiseman, “Fungal and other β-d-glucosidases—their properties and applications,” Enzyme and Microbial Technology, vol. 4, no. 2, pp. 73–79, 1982. View at Scopus
  24. M. Leclerc, A. Arnaud, R. Ratomahenina, et al., “Yeast β-glucosidases,” Biotechnology and Genetic Engineering Reviews, vol. 5, pp. 269–295, 1987.
  25. F. Stutzenberger, “Thermostable fungal β-glucosidases,” Letters in Applied Microbiology, vol. 11, no. 4, pp. 173–178, 1990. View at Scopus
  26. Y. Bhatia, S. Mishra, and V. S. Bisaria, “Microbial β-glucosidases: cloning, properties, and applications,” Critical Reviews in Biotechnology, vol. 22, no. 4, pp. 375–407, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Herpoël-Gimbert, A. Margeot, A. Dolla et al., “Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains,” Biotechnology for Biofuels, vol. 1, article 18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Chandra, A. Kalra, N. S. Sangwan, and R. S. Sangwan, “Biochemical and proteomic characterization of a novel extracellular β-glucosidase from Trichoderma citrinoviride,” Molecular Biotechnology, vol. 53, pp. 289–299, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. C. H. Persoon, “Disposita methodica fungorum,” Romer's Neues Magazine of Botany, vol. 1, pp. 81–128, 1794.
  30. I. S. Druzhinina, A. G. Kopchinskiy, M. Komoń, J. Bissett, G. Szakacs, and C. P. Kubicek, “An oligonucleotide barcode for species identification in Trichoderma and Hypocrea,” Fungal Genetics and Biology, vol. 42, no. 10, pp. 813–828, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Kopchinskiy, M. Komoń, C. P. Kubicek, and I. S. Druzhinina, “TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications,” Mycological Research, vol. 109, no. 6, pp. 658–660, 2005. View at Scopus
  32. C. P. Kubicek, M. Komon-Zelazowska, and I. S. Druzhinina, “Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity,” Journal of Zhejiang University, vol. 9, no. 10, pp. 753–763, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Martinez, R. M. Berka, B. Henrissat et al., “Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina),” Nature Biotechnology, vol. 26, no. 5, pp. 553–560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Schmoll and A. Schuster, “Biology and biotechnology of Trichoderma,” Applied Microbiology and Biotechnology, vol. 87, no. 3, pp. 787–799, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. H. L. Lee, C. K. Chang, W. Y. Jeng, et al., “Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability,” Protein Engineering, Design and Selection, vol. 25, no. 11, pp. 733–740, 2012.
  36. W.-Y. Jeng, N.-C. Wang, M.-H. Lin et al., “Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis,” Journal of Structural Biology, vol. 173, no. 1, pp. 46–56, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Dashtban and W. Qin, “Overexpression of an exotic thermotolerant β-glucosidase in Trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw,” Microbial Cell Factories, vol. 11, no. 63, pp. 1–15, 2012.
  38. H. Nakazawa, T. Kawai, N. Ida et al., “Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatusβ-glucosidase 1 for efficient biomass conversion,” Biotechnology and Bioengineering, vol. 109, no. 1, pp. 92–99, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Chen, X. Fu, T. B. Ng, and X.-Y. Ye, “Expression of a secretory β-glucosidase from Trichoderma reesei in Pichia pastoris and its characterization,” Biotechnology Letters, vol. 33, no. 12, pp. 2475–2479, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Murray, N. Aro, C. Collins et al., “Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii,” Protein Expression and Purification, vol. 38, no. 2, pp. 248–257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Saloheimo, J. Kuja-Panula, E. Ylösmäki, M. Ward, and M. Penttilä, “Enzymatic properties and intracellular localization of the novel Trichoderma reeseiβ-glucosidase BGLII (Cel1A),” Applied and Environmental Microbiology, vol. 68, no. 9, pp. 4546–4553, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. S.-I. Yun, C.-S. Jeong, D.-K. Chung, and H.-S. Choi, “Purification and some properties of a β-glucosidase from Trichoderma harzianum type C-4,” Bioscience, Biotechnology and Biochemistry, vol. 65, no. 9, pp. 2028–2032, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Takashima, A. Nakamura, M. Hidaka, H. Masaki, and T. Uozumi, “Molecular cloning and expression of the novel fungal β-glucosidase genes from Humicola grisea and Trichoderma reesei,” Journal of Biochemistry, vol. 125, no. 4, pp. 728–736, 1999. View at Scopus
  44. M. Lorito, C. K. Hayes, A. Di Pietro, S. L. Woo, and G. E. Harman, “Purification, characterization, and synergistic activity of a glucan 1,3-beta-glucosidase and an N-acetyl-beta-glucosaminidase from Trichoderma harzianum,” Phytopathology, vol. 84, no. 4, pp. 398–405, 1994. View at Scopus
  45. W. J. Chirico and R. D. Brown Jr., “Purification and characterization of a β-glucosidase from Trichoderma reesei,” European Journal of Biochemistry, vol. 165, no. 2, pp. 333–341, 1987. View at Scopus
  46. G. Beldman, M. F. Searle-Van Leeuwen, F. M. Rombouts, and F. G. Voragen, “The cellulase of Trichoderma viride. Purification, characterization and comparison of all detectable endoglucanases, exoglucanases and beta-glucosidases,” European Journal of Biochemistry, vol. 146, no. 2, pp. 301–308, 1985. View at Scopus
  47. http://www.cazy.org/.
  48. J. N. Varghese, M. Hrmova, and G. B. Fincher, “Three-dimensional structure of a barley β-D-glucan exohydrolase, a family 3 glycosyl hydrolase,” Structure, vol. 7, no. 2, pp. 179–190, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. S. G. Withers and I. P. Street, “β-Glucosidase: mechanism and inhibition,” in Plant Cell Wall Polymers: Biogenesis and Biodegradation, N. G. Lewis, Ed., pp. 597–607, American Chemical Society, Washington, DC, USA, 1989.
  50. S. G. Withers, “Mechanisms of glycosyl transferases and hydrolases,” Carbohydrate Polymers, vol. 44, no. 4, pp. 325–337, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Henrissat and G. Davies, “Structural and sequence-based classification of glycoside hydrolases,” Current Opinion in Structural Biology, vol. 7, no. 5, pp. 637–644, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Riou, J.-M. Salmon, M.-J. Vallier, Z. Günata, and P. Barre, “Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae,” Applied and Environmental Microbiology, vol. 64, no. 10, pp. 3607–3614, 1998. View at Scopus
  53. J. Eyzaguirre, M. Hidalgo, and A. Leschot, “β-Glucosidases from filamentous fungi: properties, structure, and applications,” in Handbook of Carbohydrate Engineering, CRC Taylor and Francis group, 2005.
  54. C. A. Wilson, S. I. McCrae, and T. M. Wood, “Characterisation of a β-D-glucosidase from the anaerobic rumen fungus Neocallimastix frontalis with particular reference to attack on cello-oligosaccharides,” Journal of Biotechnology, vol. 37, no. 3, pp. 217–227, 1994. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Bodenmann, U. Heiniger, and H. R. Hohl, “Extracellular enzymes of Phytophthora infestans: endo-cellulase, β-glucosidases, and 1,3-β-glucanases,” Canadian Journal of Microbiology, vol. 31, no. 1, pp. 75–82, 1985. View at Scopus
  56. R. L. De Gussem, G. M. Aerts, M. Claeyssens, and C. K. De Bruyne, “Purification and properties of an induced β-D-glucosidase from Stachybotrys atra,” Biochimica et Biophysica Acta, vol. 525, no. 1, pp. 142–153, 1978. View at Scopus
  57. T. Unno, K. Ide, T. Yazaki, et al., “High recovery purification and some properties of a β-glucosidase from Aspergillus niger,” Bioscience Biotechnology and Biochemistry, vol. 57, pp. 2172–2173, 1993.
  58. T. Funaguma and A. Hara, “Purification and properties of two β-glucosidases from Penicillium herquei Banier and Sartory,” Agricultural and Biological Chemistry, vol. 52, pp. 749–755, 1988.
  59. T. M. Wood and S. I. McCrae, “Purification and some properties of the extracellular β-d-glucosidase of the cellulolytic fungus Trichoderma koningii,” Journal of General Microbiology, vol. 128, no. 12, pp. 2973–2982, 1982. View at Scopus
  60. M. J. Rudick and A. D. Elbein, “Glycoprotein enzymes secreted by Aspergillus fumigatus. Purification and properties of β glucosidase,” Journal of Biological Chemistry, vol. 248, no. 18, pp. 6506–6513, 1973. View at Scopus
  61. G. Schmid and C. Wandrey, “Purification and partial characterization of a cellodextrin glucohydrolase (β-glucosidase) from Trichoderma reesei strain QM9414,” Biotechnology and Bioengineering, vol. 30, no. 4, pp. 571–585, 1987. View at Scopus
  62. A. McHale and M. P. Coughlan, “The cellulolytic system of Talaromyces emersonii. Purification and characterization of the extracellular and intracellular β-glucosidases,” Biochimica et Biophysica Acta, vol. 662, no. 1, pp. 152–159, 1981. View at Scopus
  63. H. Yoshioka and S. Hayashida, “Relationship between carbohydrate moiety and thermostability of β-glucosidase from Mucor miehei YH-10,” Agricultural and Biological Chemistry, vol. 45, pp. 571–577, 1981.
  64. K. Iwashita, K. Todoroki, H. Kimura, H. Shimoi, and K. Ito, “Purification and characterization of extracellular and cell wall bound β-glucosidases from Aspergillus kawachii,” Bioscience, Biotechnology and Biochemistry, vol. 62, no. 10, pp. 1938–1946, 1998. View at Scopus
  65. E. T. Reese, F. W. Parrish, and M. Ettlinger, “Nojirimycin and d-glucono-1,5-lactone as inhibitors of carbohydrases,” Carbohydrate Research, vol. 18, no. 3, pp. 381–388, 1971. View at Scopus
  66. X. Li and R. E. Calza, “Purification and characterization of an extracellular β-glucosidase from the rumen fungus Neocallimastix frontalis EB188,” Enzyme and Microbial Technology, vol. 13, no. 8, pp. 622–628, 1991. View at Publisher · View at Google Scholar · View at Scopus
  67. M. A. Jackson and D. E. Talburt, “Mechanism for β-glucosidase release into cellulose-grown Trichoderma reesei culture supernatants,” Experimental Mycology, vol. 12, no. 2, pp. 203–216, 1988. View at Scopus
  68. M. Nanda, V. S. Bisaria, and T. K. Ghose, “Localization and release mechanism of cellulases in Trichoderma reesei QM 9414,” Canadian Journal of Microbiology, vol. 4, no. 10, pp. 633–638, 1982.
  69. C. P. Kubicek, “Involvement of a conidial endoglucanase and a plasma-membrane-bound β-glucosidase in the induction of endoglucanase synthesis by cellulose in Trichoderma reesei,” Journal of General Microbiology, vol. 133, no. 6, pp. 1481–1487, 1987. View at Scopus
  70. M. Inglin, B. A. Feinberg, and J. R. Loewenberg, “Partial purification and characterization of a new intracellular beta-glucosidase of Trichoderma reesei,” Biochemical Journal, vol. 185, no. 2, pp. 515–519, 1980. View at Scopus
  71. C. W. Bamforth, “The adaptability, purification and properties of exo-beta 1,3-glucanase from the fungus Trichoderma reesei,” Biochemical Journal, vol. 191, no. 3, pp. 863–866, 1980. View at Scopus
  72. K. Kovács, L. Megyeri, G. Szakacs, C. P. Kubicek, M. Galbe, and G. Zacchi, “Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow,” Enzyme and Microbial Technology, vol. 43, no. 1, pp. 48–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. G. Okada, “Enzymatic studies on a cellulase system of Trichoderma viride—II. Purification and properties of two cellulases,” Journal of Biochemistry, vol. 77, no. 1, pp. 33–42, 1975. View at Scopus
  74. Z. Rahman, Y. Shida, T. Furukawa et al., “Application of Trichoderma reesei cellulase and xylanase promoters through homologous recombination for enhanced production of extracellular β-glucosidase i,” Bioscience, Biotechnology and Biochemistry, vol. 73, no. 5, pp. 1083–1089, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Nakari-Setälä, M. Paloheimo, J. Kallio, J. Vehmaanperä, M. Penttilä, and M. Saloheimo, “Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production,” Applied and Environmental Microbiology, vol. 75, no. 14, pp. 4853–4860, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. F. Du, E. Wolger, L. Wallace, A. Liu, T. Kaper, and B. Kelemen, “Determination of product inhibition of CBH1, CBH2, and EG1 using a novel cellulase activity assay,” Applied Biochemistry and Biotechnology, vol. 161, pp. 313–317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Berlin, V. Maximenko, N. Gilkes, and J. Saddler, “Optimization of enzyme complexes for lignocellulose hydrolysis,” Biotechnology and Bioengineering, vol. 97, no. 2, pp. 287–296, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Chen, J. Zhao, and L. Xia, “Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars,” Carbohydrate Polymers, vol. 71, no. 3, pp. 411–415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Chandra, A. Kalra, N. S. Sangwan, S. S. Gaurav, M. P. Darokar, and R. S. Sangwan, “Development of a mutant of Trichoderma citrinoviride for enhanced production of cellulases,” Bioresource Technology, vol. 100, no. 4, pp. 1659–1662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. I. De la Mata, M. P. Castillon, J. M. Dominguez, R. Macarron, and C. Acebal, “Chemical modification of β-glucosidase from Trichoderma reesei QM 9414,” Journal of Biochemistry, vol. 114, no. 5, pp. 754–759, 1993. View at Scopus
  81. V. S. Bisaria and S. Mishra, “Regulatory aspects of cellulase biosynthesis and secretion,” Critical reviews in biotechnology, vol. 9, no. 2, pp. 61–103, 1989. View at Scopus
  82. P. Tomme, R. A. J. Warren, and N. R. Gilkes, “Cellulose hydrolysis by bacteria and fungi,” Advances in Microbial Physiology, vol. 37, pp. 1–81, 1995. View at Scopus
  83. N. W. Barton, F. S. Furbish, G. T. Murray, et al., “Therapeutic response to intravenous infusions of glucocerebrosidase in patients with Gauchers disease,” Proceedings of the National Academy of Sciences USA, vol. 87, pp. 1913–1916, 1990.
  84. R. R. Singhania, A. K. Patel, R. K. Sukumaran, et al., “Role and significance of beta glucosidases in the hydrolysis of cellulose for bioethanol production,” Bioresource Technology, vol. 127, pp. 500–507, 2013. View at Publisher · View at Google Scholar
  85. Z. Wen, W. Liao, and S. Chen, “Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure,” Process Biochemistry, vol. 40, no. 9, pp. 3087–3094, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. K. Kovács, G. Szakács, and G. Zacchi, “Enzymatic hydrolysis and simultaneous saccharification and fermentation of steam-pretreated spruce using crude Trichoderma reesei and Trichoderma atroviride enzymes,” Process Biochemistry, vol. 44, no. 12, pp. 1323–1329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Chandra, A. Kalra, P. K. Sharma, and R. S. Sangwan, “Cellulase production by six Trichoderma spp. fermented on medicinal plant processings,” Journal of Industrial Microbiology and Biotechnology, vol. 36, no. 4, pp. 605–609, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Chandra, A. Kalra, P. K. Sharma, H. Kumar, and R. S. Sangwan, “Optimization of cellulases production by Trichoderma citrinoviride on marc of Artemisia annua and its application for bioconversion process,” Biomass and Bioenergy, vol. 34, no. 5, pp. 805–811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. S. K. Tangnu, H. W. Blanch, and C. R. Wilke, “Enhanced production of cellulase, hemicellulase, and β -Glucosidase by Trichoderma reesei (Rut C-30),” Biotechnology and Bioengineering, vol. 23, pp. 1837–1849, 1981.
  90. http://www.genencor.com/.
  91. http://www.novozymes.com/.