About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 204973, 8 pages
http://dx.doi.org/10.1155/2013/204973
Research Article

PSF Knockdown Enhances Apoptosis via Downregulation of LC3B in Human Colon Cancer Cells

1Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
2Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806, Japan
3Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan

Received 19 July 2013; Revised 21 September 2013; Accepted 26 September 2013

Academic Editor: Manoor Prakash Hande

Copyright © 2013 Tamotsu Tsukahara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Lengauer, K. W. Kinzler, and B. Vogelstein, “Genetic instabilities in human cancers,” Nature, vol. 396, no. 6712, pp. 643–649, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. L. A. Loeb, K. R. Loeb, and J. P. Anderson, “Multiple mutations and cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 776–781, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Ghavami, M. Hashemi, S. R. Ande et al., “Apoptosis and cancer: mutations within caspase genes,” Journal of Medical Genetics, vol. 46, no. 8, pp. 497–510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. I. M. Ghobrial, T. E. Witzig, and A. A. Adjei, “Targeting apoptosis pathways in cancer therapy,” Ca-A Cancer Journal for Clinicians, vol. 55, no. 3, pp. 178–194, 2005. View at Scopus
  5. R. A. Gupta, J. A. Brockman, P. Sarraf, T. M. Willson, and R. N. DuBois, “Target genes of peroxisome proliferator-activated receptor γ in colorectal cancer cells,” Journal of Biological Chemistry, vol. 276, no. 32, pp. 29681–29687, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Tsukahara, H. Haniu, and Y. Matsuda, “PTB-associated splicing factor (PSF) is a PPARgamma-binding protein and growth regulator of colon cancer cells,” PloS ONE, vol. 8, no. 3, Article ID e58749, 2013. View at Publisher · View at Google Scholar
  7. J. G. Patton, E. B. Porro, J. Galceran, P. Tempst, and B. Nadal-Ginard, “Cloning and characterization of PSF, a novel pre-mRNA splicing factor,” Genes and Development, vol. 7, no. 3, pp. 393–406, 1993. View at Scopus
  8. X. Song, A. Sui, and A. Garen, “Binding of mouse VL30 retrotransposon RNA to PSF protein induces genes repressed by PSF: effects on steroidogenesis and oncogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 2, pp. 621–626, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Song, Y. Sun, and A. Garen, “Roles of PSF protein and VL30 RNA in reversible gene regulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 34, pp. 12189–12193, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Wang, Y. Cui, G. Zhang, A. Garen, and X. Song, “Regulation of proto-oncogene transcription, cell proliferation, and tumorigenesis in mice by PSF protein and a VL30 noncoding RNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 39, pp. 16794–16798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. B. W. O'Malley and R. Kumar, “Nuclear receptor coregulators in cancer biology,” Cancer Research, vol. 69, no. 21, pp. 8217–8222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. DE DUVE, “The lysosome,” Scientific American, vol. 208, pp. 64–72, 1963. View at Scopus
  13. F. Reggiori and D. J. Klionsky, “Autophagy in the eukaryotic cell,” Eukaryotic Cell, vol. 1, no. 1, pp. 11–21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Levine and J. Yuan, “Autophagy in cell death: an innocent convict?” Journal of Clinical Investigation, vol. 115, no. 10, pp. 2679–2688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Codogno and A. J. Meijer, “Autophagy and signaling: their role in cell survival and cell death,” Cell Death and Differentiation, vol. 12, no. 2, pp. 1509–1518, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. E. L. Eskelinen and P. Saftig, “Autophagy: a lysosomal degradation pathway with a central role in health and disease,” Biochimica et Biophysica Acta, vol. 1793, no. 4, pp. 664–673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. B. J. Altman and J. C. Rathmell, “Metabolic stress in autophagy and cell death pathways,” Cold Spring Harbor Perspectives in Biology, vol. 4, no. 9, Article ID a008763, 2012. View at Publisher · View at Google Scholar
  18. A. C. Kimmelman, “The dynamic nature of autophagy in cancer,” Genes and Development, vol. 25, no. 19, pp. 1999–2010, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Mathew, V. Karantza-Wadsworth, and E. White, “Role of autophagy in cancer,” Nature Reviews Cancer, vol. 7, no. 12, pp. 961–967, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Boya, R. A. González-Polo, N. Casares et al., “Inhibition of macroautophagy triggers apoptosis,” Molecular and Cellular Biology, vol. 25, no. 3, pp. 1025–1040, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Kondo and S. Kondo, “Autophagy and cancer therapy,” Autophagy, vol. 2, no. 2, pp. 85–90, 2006. View at Scopus
  22. Y. Kabeya, N. Mizushima, T. Ueno et al., “LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing,” EMBO Journal, vol. 19, no. 21, pp. 5720–5728, 2000. View at Scopus
  23. B. X. Li, C. Y. Li, R. Q. Peng et al., “The expression of beclin 1 is associated with favorable prognosis in stage IIIB colon cancers,” Autophagy, vol. 5, no. 3, pp. 303–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. S. Mann and J. A. Hammarback, “Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B,” Journal of Biological Chemistry, vol. 269, no. 15, pp. 11492–11497, 1994. View at Scopus
  25. I. Tanida, T. Ueno, and E. Kominami, “Human light chain 3/MAP1LC3B Is cleaved at its carboxyl-terminal Met 121 to expose Gly120 for lipidation and targeting to autophagosomal membranes,” Journal of Biological Chemistry, vol. 279, no. 46, pp. 47704–47710, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Wu, Y. Dang, W. Su et al., “Molecular cloning and characterization of rat LC3A and LC3B—two novel markers of autophagosome,” Biochemical and Biophysical Research Communications, vol. 339, no. 1, pp. 437–442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. D. B. Munafó and M. I. Colombo, “A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation,” Journal of Cell Science, vol. 114, no. 20, pp. 3619–3629, 2001. View at Scopus