About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 206525, 7 pages
http://dx.doi.org/10.1155/2013/206525
Research Article

Prognostic Value of Combined Aquaporin 3 and Aquaporin 5 Overexpression in Hepatocellular Carcinoma

1302 Hospital of PLA, Beijing 100039, China
2Navy General Hospital, Beijing 100048, China

Received 11 May 2013; Revised 29 August 2013; Accepted 2 September 2013

Academic Editor: Koichiro Wada

Copyright © 2013 Xiaodong Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Dhir, E. R. Lyden, L. M. Smith, and C. Are, “Comparison of outcomes of transplantation and resection in patients with early hepatocellular carcinoma: a meta-analysis,” HPB, vol. 14, pp. 635–645, 2012.
  2. A. X. Zhu, “Molecularly targeted therapy for advanced hepatocellular carcinoma in 2012: current status and future perspectives,” Seminars in Oncology, vol. 39, pp. 493–502, 2012.
  3. S. Tanaka and S. Arii, “Molecular targeted therapies in hepatocellular carcinoma,” Seminars in Oncology, vol. 39, pp. 486–492, 2012.
  4. V. J. Huber, M. Tsujita, and T. Nakada, “Aquaporins in drug discovery and pharmacotherapy,” Molecular Aspects of Medicine, vol. 33, pp. 691–703, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. A. S. Verkman, “Aquaporins in clinical medicine,” Annual Review of Medicine, vol. 63, pp. 303–316, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. A. S. Verkman, “Aquaporins at a glance,” Journal of Cell Science, vol. 124, no. 13, pp. 2107–2112, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. P. R. Mazal, M. Susani, F. Wrba, and A. Haitel, “Diagnostic significance of aquaporin-1 in liver tumors,” Human Pathology, vol. 36, no. 11, pp. 1226–1231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Padma, A. M. Smeltz, P. M. Banks, D. A. Iannitti, and I. H. McKillop, “Altered aquaporin 9 expression and localization in human hepatocellular carcinoma,” HPB, vol. 11, no. 1, pp. 66–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. E. M. Jablonski, M. A. Mattocks, E. Sokolov et al., “Decreased aquaporin expression leads to increased resistance to apoptosis in hepatocellular carcinoma,” Cancer Letters, vol. 250, no. 1, pp. 36–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Hara-Chikuma and A. S. Verkman, “Aquaporin-3 functions as a glycerol transporter in mammalian skin,” Biology of the Cell, vol. 97, no. 7, pp. 479–486, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Inoue, E. Sohara, T. Rai et al., “Immunolocalization and translocation of aquaporin-5 water channel in sweat glands,” Journal of Dermatological Science, vol. 70, pp. 26–33, 2013.
  12. T. Matsuzaki, T. Susa, K. Shimizu et al., “Function of the membrane water channel aquaporin-5 in the salivary gland,” Acta Histochemica et Cytochemica, vol. 45, pp. 251–259, 2012. View at Publisher · View at Google Scholar
  13. X. Guo, L. Xiong, L. Zou, and J. Zhao, “Upregulation of bone morphogenetic protein 4 is associated with poor prognosis in patients with hepatocellular carcinoma,” Pathology and Oncology Research, vol. 18, pp. 635–640, 2012.
  14. X. Guo, L. Xiong, T. Sun et al., “Expression features of SOX9 associate with tumor progression and poor prognosis of hepatocellular carcinoma,” Diagnostic Pathology, vol. 7, article 44, 2012.
  15. X. Guo, L. Xiong, L. Zou et al., “L1 cell adhesion molecule overexpression in hepatocellular carcinoma associates with advanced tumor progression and poor patient survival,” Diagnostic Pathology, vol. 7, article 96, 2012.
  16. C. Hachez and F. Chaumont, “Aquaporins: a family of highly regulated multifunctional channels,” Advances in Experimental Medicine and Biology, vol. 679, pp. 1–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Ishimoto, K. Wada, Y. Usami et al., “Differential expression of aquaporin 5 and aquaporin 3 in squamous cell carcinoma and adenoid cystic carcinoma,” International Journal of Oncology, vol. 41, pp. 67–75, 2012.
  18. M. Kusayama, K. Wada, M. Nagata et al., “Critical role of aquaporin 3 on growth of human esophageal and oral squamous cell carcinoma,” Cancer Science, vol. 102, no. 6, pp. 1128–1136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Sekine, Y. Shimada, T. Nagata et al., “Prognostic significance of aquaporins in human biliary tract carcinoma,” Oncology Reports, vol. 27, pp. 1741–1747, 2012.
  20. K. K. Sung, K. C. Young, J. Woo et al., “Role of human aquaporin 5 in colorectal carcinogenesis,” American Journal of Pathology, vol. 173, no. 2, pp. 518–525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Z.-Q. Zhang, Z.-X. Zhu, C.-X. Bai, and Z.-H. Chen, “Aquaporin 5 expression increases mucin production in lung adenocarcinoma,” Oncology Reports, vol. 25, no. 6, pp. 1645–1650, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Watanabe, T. Fujii, T. Oya et al., “Involvement of aquaporin-5 in differentiation of human gastric cancer cells,” Journal of Physiological Sciences, vol. 59, no. 2, pp. 113–122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J.-H. Yang, Y.-F. Shi, Q. Cheng, and L. Deng, “Expression and localization of aquaporin-5 in the epithelial ovarian tumors,” Gynecologic Oncology, vol. 100, no. 2, pp. 294–299, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Li, D. Lu, Y. Zhang et al., “Critical role of aquaporin-3 in epidermal growth factor-induced migration of colorectal carcinoma cells and its clinical significance,” Oncology Reports, vol. 29, pp. 535–540, 2013.
  25. W. Otto, P. C. Rubenwolf, M. Burger et al., “Loss of aquaporin 3 protein expression constitutes an independent prognostic factor for progression-free survival: an immunohistochemical study on stage pT1 urothelial bladder cancer,” BMC Cancer, vol. 12, article 459, 2012.